I hope that the evaluation framework introduced in the paper can become used by other researchers working on mutational signatures.
This is a seminal paper on reproducibility in cancer biology. It should be a gold standard for reproducible research work. Therefore, it should be attempted to reproduce it. Supposedly, this will be pretty easy to reproduce and can be used as a *positive control* in repro hacks!
We invested a lot of work to make the analyses from the paper reproducible and we are very curious how the documentation could be improved and if people run into any problems.
The methods are widely applicable to other DNA sequence clustering problems. Someone may obtain contradicting results with a new algorithm. In such a case, rerunning our scripts on the same or new data may help elucidate the source of the differences between the results.
There is a numerical benchmark reported in Fig. 4 with absolute runtimes and memory usages that can directly be reproduced with the provided source code. The benchmark was performed on the author's computer, and since numerical performance and parallel scaling can be somewhat hardware-dependent, it would be of interest to see whether a performance that is comparable to the one reported in the paper can be reproduced by others on their own computers in practice. The benchmark simulates a growing tissue from one to 10,000 cells in just ten minutes, so this offers an easy entry point into tissue modeling and simulation. No input data is needed to reproduce the output. The program has no dependencies.
The paper describes pyKNEEr, a python package for open and reproducible research on femoral knee cartilage using Jupyter notebooks as a user interface. I created this paper with the specific intent to make both the workflows it describes and the paper itself open and reproducible, following guidelines from authorities in the field.
This paper is fully reproducible; we provide the protocol that the different modelers used, the data produced from these models, the observed data, and the code to run the analysis that led to the results of the paper, figures, and text. I have not come across any other paper in forestry that is as fully reproducible as our paper, so it might also be a rare example in this field and hopefully a motivation to others to do so. Please notice that we do not provide the models that were used to run the simulations, as these are the results used (or data collection), but we do provide the data resulting from these simulations.
In this paper, an R package was used to improve the reproducibility of the analyses. Therefore, it would be good to know to what extent this works. The R package includes the following analyses: (1) data trimming and preparation, (2) descriptive statistics, (3) reliability and correlations, (4) t-tests and Bayesian t-tests, (5) latent-change models (structural equation modeling approach), and (6) multiverse analyses. Furthermore, all deidentified data, experiment codes, research materials, and results are publicly accessible on the Open Science Framework (OSF) at https://osf.io/ngfxv. The study’s design and the analyses were pre-registered on OSF. The preregistration can be accessed at https://osf.io/ tywu7.
I tried as hard as possible to make it reproducible, which it is on my computer. I would be happy to see if this still works on other computers. Moreover, by allowing easy reproducibility, I hope that other people may easily build research on top of this work.
I used a lot of different tools and strategies to make this paper easily reproducible at different levels. There's Docker container for the highest level of reproducibility, and package versions are managed with renv. The data used in the paper is hosted on Zenodo to avoid long queue times when downloading from the Climate Data Store and future-proof for when it goes away and checksumed before using it.
I tried hard to make it reproducible, so hopefully this paper can serve as an example on how reproducibility can be achieved. I think that being reproducible with only few commands to type in a terminal is quite an achievment. At least in my field, where I usually see code published along with paper, but with almost no documentation on how to rerun it.
We spend a lot of time to make our analyses reproducible. A review would allow us to collect some information on whether we are successful with it.
This article used an open-source python repository for its analysis. It is well-suited for reproduction as more literature evolves on the intersection of urban planning and climate change. The adapted code is published alongside the article.
This article was meant to be entirely reproducible, with the data and code published alongside the article. It is however not embedded within a container (e.g. Docker). Will it past the reproducibility test tomorrow? next year? I'm curious.
We think this is an interesting paper for anyone who wants to learn to build an API with the R package plumber. This is a novel method in health economics, but we believe will help improve the transparency of modelling methods in our field.
The code and data are both on GitHub. The paper has been published in Wellcome Open Research and has been replicated by multiple other authors.
In the middle of the COVID-19 pandemic, this paper provided important evidence regarding the effect of misinformation on vaccination intent. Its analyses and conclusions were extremely important for decision makers. Therefore, it is also important that the analyses are reproducible.
This paper provides a good learning example for intense light-matter interactions in an applied magnetic field.
This is a review paper that discusses a ubiquitous electron acceleration mechanism. Reproducing the discussed regimes can serve as a good learning platform.
Most electron beam physics is considered in the context of a vacuum, but there are applications to long-range electron beam transmission in air. As particle acceleration sources become more compact, we may have the chance to take particle beams out to the real world. The example provided in the paper describes that of x-ray backscatter detectors, where significantly stronger signals could be achieved by scanning objects with electron beams. This paper forms the basis for a potential new mode of particle-beam research, and it is important to ensure the reproducibility of this work for groups who wish to explore the applications of this new technology.