Papers



Submit a Paper!

Browse ReproHack papers

  • Enhanced proton acceleration in an applied longitudinal magnetic field

    Authors: Alexey Arefiev, Toma Toncian, Gennady Fiksel
    DOI: 10.1088/1367-2630/18/10/105011
    Submitted by aarefiev    

    Why should we attempt to reproduce this paper?

    This paper provides a good learning example for intense light-matter interactions in an applied magnetic field.

    Tags: EPOCH
  • Beyond the ponderomotive limit: Direct laser acceleration of relativistic electrons in sub-critical plasmas

    Authors: A Arefiev, V Khudik, A Robinson, G Shvets, L Willingale, M Schollmeier
    DOI: 10.1063/1.4946024
    Submitted by aarefiev    
      Mean reproducibility score:   4.0/10   |   Number of reviews:   1
    Why should we attempt to reproduce this paper?

    This is a review paper that discusses a ubiquitous electron acceleration mechanism. Reproducing the discussed regimes can serve as a good learning platform.

    Tags: EPOCH
  • Laser-assisted propagation of a relativistic electron bunch in air

    Authors: R M G M Trines, A P L Robinson, J R Wilkinson, J N Kirk, D S Hills, R M Deas, S Morris, T Goffrey, K Bennett, T D Arber
    DOI: 10.1088/1361-6587/ac0b9d
    Submitted by Stuart_Morris      

    Why should we attempt to reproduce this paper?

    Most electron beam physics is considered in the context of a vacuum, but there are applications to long-range electron beam transmission in air. As particle acceleration sources become more compact, we may have the chance to take particle beams out to the real world. The example provided in the paper describes that of x-ray backscatter detectors, where significantly stronger signals could be achieved by scanning objects with electron beams. This paper forms the basis for a potential new mode of particle-beam research, and it is important to ensure the reproducibility of this work for groups who wish to explore the applications of this new technology.

  • Highly efficient conversion of laser energy to hard X-rays in high intensity laser-solid simulations

    Authors: S. Morris, A. Robinson, C. Ridgers
    DOI: 10.1063/5.0055398
    Submitted by Stuart_Morris      

    Why should we attempt to reproduce this paper?

    There are many applications to multi-MeV X-rays. Their penetrative properties make them good for scanning dense objects for industry, and their ionising properties can destroy tumours in radiotherapy. They are also around the energy of nuclear transitions, so they can trigger nuclear reactions to break down nuclear waste into medical isotopes, or to reveal smuggled nuclear-materials for port security. Laser-driven X-ray generation offers a compact and efficient way to create a bright source of X-rays, without having to construct a large synchrotron. To fully utilise this capability, work on optimising the target design and understanding the underlying X-ray mechanisms are essential. The hybrid-PIC code is in a unique position to model the full interaction, so its ease-of-use and reproducibility are crucial for this field to develop.

  • Optimizing the Use of Carbonate Standards to Minimize Uncertainties in Clumped Isotope Data

    Authors: Ilja J. Kocken, Inigo A. Müller, Martin Ziegler
    DOI: 10.1029/2019GC008545
    Submitted by japhir      

    Why should we attempt to reproduce this paper?

    Even though the approach in the paper focuses on a specific measurement (clumped isotopes) and how to optimize which and how many standards we use, I hope that the problem is general enough that insight can translate to any kind of measurement that relies on machine calibration. I've committed to writing a literate program (plain text interspersed with code chunks) to explain what is going on and to make the simulations one step at a time. I really hope that this is understandable to future collaborators and scientists in my field, but I have not had any code review internally and I also didn't receive any feedback on it from the reviewers. I would love to see if what in my mind represents "reproducible code" is actually reproducible, and to learn what I can improve for future projects!