Most electron beam physics is considered in the context of a vacuum, but there are applications to long-range electron beam transmission in air. As particle acceleration sources become more compact, we may have the chance to take particle beams out to the real world. The example provided in the paper describes that of x-ray backscatter detectors, where significantly stronger signals could be achieved by scanning objects with electron beams. This paper forms the basis for a potential new mode of particle-beam research, and it is important to ensure the reproducibility of this work for groups who wish to explore the applications of this new technology.
The current code is written in Torch, which is no longer actively maintained. Since deep learning in nanophotonics is an area of active interest (e.g. for the design of new metamaterials), it is important to update the code to use a more modern deep learning library such as tensorflow/keras
I tried hard to make this paper as reproducible as possible, but as techniques and dependencies become more complex, it is hard to make it 100% clear. Any form of feedback is more than welcome.