Papers



Submit a Paper!

Browse ReproHack papers

  • Tree regeneration in models of forest dynamics: A key priority for further research

    Authors: Olalla Díaz‐Yáñez; Yannek Käber; Tim Anders; Friedrich Bohn; Kristin H. Braziunas; Josef Brůna; Rico Fischer; Samuel M. Fischer; Jessica Hetzer; Thomas Hickler et al.
    DOI: 10.1002/ecs2.4807
    Submitted by odiazyanez    
    Number of reviews:   1
    Why should we attempt to reproduce this paper?

    This paper is fully reproducible; we provide the protocol that the different modelers used, the data produced from these models, the observed data, and the code to run the analysis that led to the results of the paper, figures, and text. I have not come across any other paper in forestry that is as fully reproducible as our paper, so it might also be a rare example in this field and hopefully a motivation to others to do so. Please notice that we do not provide the models that were used to run the simulations, as these are the results used (or data collection), but we do provide the data resulting from these simulations.

  • Measuring the impact of COVID-19 vaccine misinformation on vaccination intent in the UK and USA

    Authors: Sahil Loomba, Alexandre de Figueiredo, Simon J. Piatek, Kristen de Graaf, Heidi J. Larson
    DOI: 10.1038/s41562-021-01056-1
    Submitted by samuelpawel      
      Mean reproducibility score:   6.9/10   |   Number of reviews:   7
    Why should we attempt to reproduce this paper?

    In the middle of the COVID-19 pandemic, this paper provided important evidence regarding the effect of misinformation on vaccination intent. Its analyses and conclusions were extremely important for decision makers. Therefore, it is also important that the analyses are reproducible.

  • PlanGAN: Model-based Planning With Sparse Rewards and Multiple Goals

    Authors: Henry Charlesworth and Giovanni Montana
    Submitted by gmontana74      
      Mean reproducibility score:   10.0/10   |   Number of reviews:   1
    Why should we attempt to reproduce this paper?

    This paper proposes a probabilistic planner that can solve goal-conditional tasks such as complex continuous control problems. The approach reaches state-of-the-art performance when compared to current deep reinforcement learning algorithms. However, the method relies on an ensemble of deep generative models and is computationally intensive. It would be interesting to reproduce the results presented in this paper on their robotic manipulation and navigation problems as these are very challenging problems that current reinforcement learning methods cannot easily solve (and when they do, they require a significantly larger number of experiences). Can the results be reproduced out-of-the-box with the provided code?

  • pyKNEEr: An image analysis workflow for open and reproducible research on femoral knee cartilage

    Authors: Bonaretti S, Gold GE, Beaupre GS
    DOI: 10.1371/journal.pone.0226501
    Submitted by hub-admin    
      Mean reproducibility score:   6.5/10   |   Number of reviews:   2
    Why should we attempt to reproduce this paper?

    The paper describes pyKNEEr, a python package for open and reproducible research on femoral knee cartilage using Jupyter notebooks as a user interface. I created this paper with the specific intent to make both the workflows it describes and the paper itself open and reproducible, following guidelines from authorities in the field. Therefore, two things in the paper can be reproduced: 1) workflow results: Table 2 contains links to all the Jupyter notebooks used to calculate the results. Computations are long and might require a server, so if you want to run them locally, I recommend using only 2 or 3 images as inputs for the computations. Also, the paper should be sufficient, but if you need further introductory info, there are a documentation website: https://sbonaretti.github.io/pyKNEEr/ and a "how to" video: https://youtu.be/7WPf5KFtYi8 2) paper graphs: In the captions of figures 1, 4, and 5 you can find links to data repository, code (a Jupyter notebook), and the computational environment (binder) to fully reproduce the graph. These computations can be easily run locally and require a few seconds. All Jupyter notebooks automatically download data from Zenodo and provide dependencies, which should make reproducibility easier.

Search for papers

Filter by tags

Python R GDAL GEOS GIS Shiny PROJ Galaxies Astronomy HPC Databases Binder Social Science Stata make Computer Science Jupyter Notebook tidyverse emacs literate earth sciences clumped isotopes org-mode geology eyetracking LaTeX Git ArcGIS Docker Drake SVN knitr C Matlab Mathematica Meta-analysis swig miniconda tensorflow keras Pandas SQL neuroscience robotics deep learning planner reiforcement learning Plasma physics Hybrid-PIC EPOCH Laser Gamma-ray X-ray radiation Petawatt Fortran plasma PIC physics Monte Carlo Atomistic Simulation LAMMPS Electron Transport DFT descriptors interatomic potentials machine learning Molecular Dynamics Python scripting AIRSS structure prediction density functional theory high-throughput machine-learning RNA bioinformatics CFD Fluid Dynamics OpenFOAM C++ DNS Mathematics Droplets Basilisk Particle-In-Cell psychology Stan Finance SAS Replication crisis Economics Malaria consumer behavior number estimation mental arithmetic psychophysics Archaeology Precipitation Epidemiology Parkrun Health Health Economics HTA plumber science of science Zipf networks city size distribution urbanism literature review Preference Visual Questionnaire Mann-Whitney Correlation Conceptual replication Cognitive psychology Multinomial processing tree (MPT) modeling #urbanism #R k-means cluster analysis city-regions Urban Knowledge Systems Topic modelling Planning Support Systems Software Citation Quarto snakemake Numerical modelling Ocean climate physical oceanography apptainer oceanography R package structural equation modeling bayes factor Forest Simulations Models of forest dynamics multi-lab study mice mechanics growth Tissue Cells Clustering Expectation-Maximization bootstrapping R software Position Weight Matrices singularity neuroimaging effect size biology replicability cancer reproducibility csv osf preclinical research genomics All tags Clear tags

Key

  Associated with an event
  Available for general review
  Public reviews welcome