This article used an open-source python repository for its analysis. It is well-suited for reproduction as more literature evolves on the intersection of urban planning and climate change. The adapted code is published alongside the article.
There are many applications to multi-MeV X-rays. Their penetrative properties make them good for scanning dense objects for industry, and their ionising properties can destroy tumours in radiotherapy. They are also around the energy of nuclear transitions, so they can trigger nuclear reactions to break down nuclear waste into medical isotopes, or to reveal smuggled nuclear-materials for port security. Laser-driven X-ray generation offers a compact and efficient way to create a bright source of X-rays, without having to construct a large synchrotron. To fully utilise this capability, work on optimising the target design and understanding the underlying X-ray mechanisms are essential. The hybrid-PIC code is in a unique position to model the full interaction, so its ease-of-use and reproducibility are crucial for this field to develop.
I tried hard to make this paper as reproducible as possible, but as techniques and dependencies become more complex, it is hard to make it 100% clear. Any form of feedback is more than welcome.