Papers



Submit a Paper!

Browse ReproHack papers

  • Machine learning a model for RNA structure prediction

    Authors: Nicola Calonaci, Alisha Jones, Francesca Cuturello, Michael Sattler, Giovanni Bussi
    DOI: 10.1093/nargab/lqaa090
    Submitted by giovannibussi      

    Why should we attempt to reproduce this paper?

    The method is trained on the data that were available, but it is meant to be re-trainable as soon as new data are published. It would be great to be really sure that even someone else will be able to do it. In case we receive any feedback, we would be really happy to improve our Github repository so as to make the reproduction easier!

  • Accelerating the prediction of large carbon clusters via structure search: Evaluation of machine-learning and classical potentials

    Authors: Bora Karasulu, Jean-Marc Leyssale, Patrick Rowe, Cedric Weber, Carla de Tomas
    DOI: 10.1016/j.carbon.2022.01.031
    Submitted by bkarasulu    
    Number of reviews:   1
    Why should we attempt to reproduce this paper?

    This paper presents a fine example of high-throughput computational materials screening studies, mainly focusing on the carbon nanoclusters of different sizes. In the paper, a set of diverse empirical and machine-learned interatomic potentials, which are commonly used to simulate carbonaceous materials, is benchmarked against the higher-level density functional theory (DFT) data, using a range of diverse structural features as the comparison criteria. Trying to reproduce the data presented here (even if you only consider a subset of the interaction potentials) will help you devise an understanding as to how you could approach a high-throughput structure prediction problem. Even though we concentrate here on isolated/finite nanoclusters, AIRSS (and other similar approaches like USPEX, CALYPSO, GMIN, etc.,) can also be used to predict crystal structures of different class of materials with applications in energy storage, catalysis, hydrogen storage, and so on.

  • Encapsulated Nanowires: Boosting Electronic Transport in Carbon Nanotubes

    Authors: Andrij Vasylenko, Jamie Wynn, Paulo Medeiros, Andrew J Morris, Jeremy Sloan, David Quigley
    DOI: 10.1103/PhysRevB.95.121408
    Submitted by dquigley      
      Mean reproducibility score:   5.0/10   |   Number of reviews:   2
    Why should we attempt to reproduce this paper?

    DFT calculations are in principle reproducible between different codes, but differences can arise due to poor choice of convergence tolerances, inappropriate use of pseudopotentials and other numerical considerations. An independent validation of the key quantities needed to compute electrical conductivity would be valuable. In this case we have published our input files for calculating the four quantities needed to parametrise the transport simulations from which we compute the electrical conductivity. These are specifically electronic band structure, phonon dispersions, electron-phonon coupling constants and third derivatives of the force constants. Each in turn in more sensitive to convergence tolerances than the last, and it is the final quantity on which the conclusions of the paper critically depend. Reference output data is provided for comparison at the data URL below. We note that the pristine CNT results (dark red line) in figure 3 are an independent reproduction of earlier work and so we are confident the Boltzmann transport simulations are reproducible. The calculated inputs to these from DFT (in the case of Be encapsulation) have not been independently reproduced to our knowledge.

  • Hyperparameter importance Across Datasets

    Authors: Jan N van Rijn and Frank Hutter
    DOI: 10.1145/3219819.3220058
    Submitted by hub-admin    
      Mean reproducibility score:   7.0/10   |   Number of reviews:   1
    Why should we attempt to reproduce this paper?

    I tried hard to make this paper as reproducible as possible, but as techniques and dependencies become more complex, it is hard to make it 100% clear. Any form of feedback is more than welcome.

Search for papers

Filter by tags

Python R GDAL GEOS GIS Shiny PROJ Galaxies Astronomy HPC Databases Binder Social Science Stata make Computer Science Jupyter Notebook tidyverse emacs literate earth sciences clumped isotopes org-mode geology eyetracking LaTeX Git ArcGIS Docker Drake SVN knitr C Matlab Mathematica Meta-analysis swig miniconda tensorflow keras Pandas SQL neuroscience robotics deep learning planner reiforcement learning Plasma physics Hybrid-PIC EPOCH Laser Gamma-ray X-ray radiation Petawatt Fortran plasma PIC physics Monte Carlo Atomistic Simulation LAMMPS Electron Transport DFT descriptors interatomic potentials machine learning Molecular Dynamics Python scripting AIRSS structure prediction density functional theory high-throughput machine-learning RNA bioinformatics CFD Fluid Dynamics OpenFOAM C++ DNS Mathematics Droplets Basilisk Particle-In-Cell psychology Stan Finance SAS Replication crisis Economics Malaria consumer behavior number estimation mental arithmetic psychophysics Archaeology Precipitation Epidemiology Parkrun Health Health Economics HTA plumber science of science Zipf networks city size distribution urbanism literature review Preference Visual Questionnaire Mann-Whitney Correlation Conceptual replication Cognitive psychology Multinomial processing tree (MPT) modeling #urbanism #R k-means cluster analysis city-regions Urban Knowledge Systems Topic modelling Planning Support Systems Software Citation Quarto snakemake Numerical modelling Ocean climate physical oceanography apptainer oceanography R package structural equation modeling bayes factor Forest Simulations Models of forest dynamics multi-lab study mice mechanics growth Tissue Cells Clustering Expectation-Maximization bootstrapping R software Position Weight Matrices singularity neuroimaging effect size biology replicability cancer reproducibility csv osf preclinical research genomics All tags Clear tags

Key

  Associated with an event
  Available for general review
  Public reviews welcome