Popular descriptors for machine learning potentials such as the Behler-Parinello atom centred symmetry functions (ACSF) or the Smooth Overlap of Interatomic Potentials (SOAP) are widely used but so far not much attention has been paid to optimising how many descriptor components need to be included to give good results.
Paper and codes+data have been published 4 years ago, will they still work? I always try to release data and codes to reproduce my papers, but I seldom receive feedback. It would be useful to have comments from a reproducers' team, in order to improve sharing for future research (I switched from MATLAB to Python already).