Submit a Paper!

Browse ReproHack papers

  • Measuring the impact of COVID-19 vaccine misinformation on vaccination intent in the UK and USA

    Authors: Sahil Loomba, Alexandre de Figueiredo, Simon J. Piatek, Kristen de Graaf, Heidi J. Larson
    DOI: 10.1038/s41562-021-01056-1
    Submitted by samuelpawel      
      Mean reproducibility score:   8.0/10   |   Number of reviews:   1
    Why should we attempt to reproduce this paper?

    In the middle of the COVID-19 pandemic, this paper provided important evidence regarding the effect of misinformation on vaccination intent. Its analyses and conclusions were extremely important for decision makers. Therefore, it is also important that the analyses are reproducible.

  • Optimizing the Use of Carbonate Standards to Minimize Uncertainties in Clumped Isotope Data

    Authors: Ilja J. Kocken, Inigo A. Müller, Martin Ziegler
    DOI: 10.1029/2019GC008545
    Submitted by japhir      

    Why should we attempt to reproduce this paper?

    Even though the approach in the paper focuses on a specific measurement (clumped isotopes) and how to optimize which and how many standards we use, I hope that the problem is general enough that insight can translate to any kind of measurement that relies on machine calibration. I've committed to writing a literate program (plain text interspersed with code chunks) to explain what is going on and to make the simulations one step at a time. I really hope that this is understandable to future collaborators and scientists in my field, but I have not had any code review internally and I also didn't receive any feedback on it from the reviewers. I would love to see if what in my mind represents "reproducible code" is actually reproducible, and to learn what I can improve for future projects!

  • pyKNEEr: An image analysis workflow for open and reproducible research on femoral knee cartilage

    Authors: Bonaretti S, Gold GE, Beaupre GS
    DOI: 10.1371/journal.pone.0226501
    Submitted by hub-admin    
      Mean reproducibility score:   6.5/10   |   Number of reviews:   2
    Why should we attempt to reproduce this paper?

    The paper describes pyKNEEr, a python package for open and reproducible research on femoral knee cartilage using Jupyter notebooks as a user interface. I created this paper with the specific intent to make both the workflows it describes and the paper itself open and reproducible, following guidelines from authorities in the field. Therefore, two things in the paper can be reproduced: 1) workflow results: Table 2 contains links to all the Jupyter notebooks used to calculate the results. Computations are long and might require a server, so if you want to run them locally, I recommend using only 2 or 3 images as inputs for the computations. Also, the paper should be sufficient, but if you need further introductory info, there are a documentation website: and a "how to" video: 2) paper graphs: In the captions of figures 1, 4, and 5 you can find links to data repository, code (a Jupyter notebook), and the computational environment (binder) to fully reproduce the graph. These computations can be easily run locally and require a few seconds. All Jupyter notebooks automatically download data from Zenodo and provide dependencies, which should make reproducibility easier.