I hope that the evaluation framework introduced in the paper can become used by other researchers working on mutational signatures.
The method is trained on the data that were available, but it is meant to be re-trainable as soon as new data are published. It would be great to be really sure that even someone else will be able to do it. In case we receive any feedback, we would be really happy to improve our Github repository so as to make the reproduction easier!
Even though the approach in the paper focuses on a specific measurement (clumped isotopes) and how to optimize which and how many standards we use, I hope that the problem is general enough that insight can translate to any kind of measurement that relies on machine calibration. I've committed to writing a literate program (plain text interspersed with code chunks) to explain what is going on and to make the simulations one step at a time. I really hope that this is understandable to future collaborators and scientists in my field, but I have not had any code review internally and I also didn't receive any feedback on it from the reviewers. I would love to see if what in my mind represents "reproducible code" is actually reproducible, and to learn what I can improve for future projects!
- This paper is a good example of a standard social science study that is (I hope!) fully reproducible, from main analysis, to supplementary analyses and figures. - I have not yet received any external feedback w.r.t. its reproducibility, so would be interested to see if I have overlooked any gaps in the reproduction workflow that I anticipated.
The results of the individual studies (4) could be interpreted in support for the hypothesis, but the meta-analysis suggested that implicit identification was not a useful predictor overall. This conclusion is an important goalpost for future work.