I hope that the evaluation framework introduced in the paper can become used by other researchers working on mutational signatures.
The methods are widely applicable to other DNA sequence clustering problems. Someone may obtain contradicting results with a new algorithm. In such a case, rerunning our scripts on the same or new data may help elucidate the source of the differences between the results.
We think this is an interesting paper for anyone who wants to learn to build an API with the R package plumber. This is a novel method in health economics, but we believe will help improve the transparency of modelling methods in our field.
The method is trained on the data that were available, but it is meant to be re-trainable as soon as new data are published. It would be great to be really sure that even someone else will be able to do it. In case we receive any feedback, we would be really happy to improve our Github repository so as to make the reproduction easier!