I hope that the evaluation framework introduced in the paper can become used by other researchers working on mutational signatures.
In this paper, an R package was used to improve the reproducibility of the analyses. Therefore, it would be good to know to what extent this works. The R package includes the following analyses: (1) data trimming and preparation, (2) descriptive statistics, (3) reliability and correlations, (4) t-tests and Bayesian t-tests, (5) latent-change models (structural equation modeling approach), and (6) multiverse analyses. Furthermore, all deidentified data, experiment codes, research materials, and results are publicly accessible on the Open Science Framework (OSF) at https://osf.io/ngfxv. The study’s design and the analyses were pre-registered on OSF. The preregistration can be accessed at https://osf.io/ tywu7.
The method is trained on the data that were available, but it is meant to be re-trainable as soon as new data are published. It would be great to be really sure that even someone else will be able to do it. In case we receive any feedback, we would be really happy to improve our Github repository so as to make the reproduction easier!
The results of this paper have been used in multiple subsequent studies as a benchmark against which other methods of performing the same calculation have been tested. Other groups have challenged the results as suffering from finite size effects, in particular the calculations on mixtures of cubic and hexagonal ice. Should there be time during in the event, participants could check this by performing calculations on larger unit cells. Each individual calculation should converge adequately within 96 hours making it amenable to a HPC ReproHack. Given modern HPC hardware many such calculations could be run concurrently on a single HPC node.