Papers



Submit a Paper!

Browse ReproHack papers

  • A comprehensive comparison of tools for fitting mutational signatures

    Authors: Matúš Medo, Michaela Medová
    DOI: 10.48550/arXiv.2310.01562
    Submitted by 8medom    

    Why should we attempt to reproduce this paper?

    I hope that the evaluation framework introduced in the paper can become used by other researchers working on mutational signatures.

  • The Interplay of Time-of-day and Chronotype Results in No General and Robust Cognitive Boost

    Authors: Alodie Rey-Mermet, Nicolas Rothen
    DOI: https://doi.org/10.1525/collabra.88337
    Submitted by areyme      

    Why should we attempt to reproduce this paper?

    In this paper, an R package was used to improve the reproducibility of the analyses. Therefore, it would be good to know to what extent this works. The R package includes the following analyses: (1) data trimming and preparation, (2) descriptive statistics, (3) reliability and correlations, (4) t-tests and Bayesian t-tests, (5) latent-change models (structural equation modeling approach), and (6) multiverse analyses. Furthermore, all deidentified data, experiment codes, research materials, and results are publicly accessible on the Open Science Framework (OSF) at https://osf.io/ngfxv. The study’s design and the analyses were pre-registered on OSF. The preregistration can be accessed at https://osf.io/ tywu7.

  • Machine learning a model for RNA structure prediction

    Authors: Nicola Calonaci, Alisha Jones, Francesca Cuturello, Michael Sattler, Giovanni Bussi
    DOI: 10.1093/nargab/lqaa090
    Submitted by giovannibussi      

    Why should we attempt to reproduce this paper?

    The method is trained on the data that were available, but it is meant to be re-trainable as soon as new data are published. It would be great to be really sure that even someone else will be able to do it. In case we receive any feedback, we would be really happy to improve our Github repository so as to make the reproduction easier!

  • Accelerating the prediction of large carbon clusters via structure search: Evaluation of machine-learning and classical potentials

    Authors: Bora Karasulu, Jean-Marc Leyssale, Patrick Rowe, Cedric Weber, Carla de Tomas
    DOI: 10.1016/j.carbon.2022.01.031
    Submitted by bkarasulu    
    Number of reviews:   1
    Why should we attempt to reproduce this paper?

    This paper presents a fine example of high-throughput computational materials screening studies, mainly focusing on the carbon nanoclusters of different sizes. In the paper, a set of diverse empirical and machine-learned interatomic potentials, which are commonly used to simulate carbonaceous materials, is benchmarked against the higher-level density functional theory (DFT) data, using a range of diverse structural features as the comparison criteria. Trying to reproduce the data presented here (even if you only consider a subset of the interaction potentials) will help you devise an understanding as to how you could approach a high-throughput structure prediction problem. Even though we concentrate here on isolated/finite nanoclusters, AIRSS (and other similar approaches like USPEX, CALYPSO, GMIN, etc.,) can also be used to predict crystal structures of different class of materials with applications in energy storage, catalysis, hydrogen storage, and so on.

  • New Insight into the Stability of CaCO3 Surfaces and Nanoparticles via Molecular Simulation

    Authors: A. Matthew Bano, P. Mark Rodger, and David Quigley
    DOI: 10.1021/la501409j
    Submitted by dquigley      

    Why should we attempt to reproduce this paper?

    The negative surface enthalpies in figure 5 are surprising. At least one group has attempted to reproduce these using a different code and obtained positive enthalpies. This was attributed to the inability of that code to independently relax the three simulation cell vectors resulting in an unphysical water density. This demonstrates how sensitive these results can be to the particular implementation of simulation algorithms in different codes. Similarly the force field used is now very popular. Its functional form and full set of parameters can be found in the literature. However differences in how different simulation codes implement truncation, electrostatics etc can lead to significant difference in results such as these. It would be a valuable exercise to establish if exactly the same force field as that used here can be reproduced from only its specification in the literature. The interfacial energies of interest should be reproducible with simulations on modest numbers of processors (a few dozen) with run times for each being 1-2 days. Each surface is an independent calculation and so these can be run concurrently during the ReproHack.

Search for papers

Filter by tags

Python R GDAL GEOS GIS Shiny PROJ Galaxies Astronomy HPC Databases Binder Social Science Stata make Computer Science Jupyter Notebook tidyverse emacs literate earth sciences clumped isotopes org-mode geology eyetracking LaTeX Git ArcGIS Docker Drake SVN knitr C Matlab Mathematica Meta-analysis swig miniconda tensorflow keras Pandas SQL neuroscience robotics deep learning planner reiforcement learning Plasma physics Hybrid-PIC EPOCH Laser Gamma-ray X-ray radiation Petawatt Fortran plasma PIC physics Monte Carlo Atomistic Simulation LAMMPS Electron Transport DFT descriptors interatomic potentials machine learning Molecular Dynamics Python scripting AIRSS structure prediction density functional theory high-throughput machine-learning RNA bioinformatics CFD Fluid Dynamics OpenFOAM C++ DNS Mathematics Droplets Basilisk Particle-In-Cell psychology Stan Finance SAS Replication crisis Economics Malaria consumer behavior number estimation mental arithmetic psychophysics Archaeology Precipitation Epidemiology Parkrun Health Health Economics HTA plumber science of science Zipf networks city size distribution urbanism literature review Preference Visual Questionnaire Mann-Whitney Correlation Conceptual replication Cognitive psychology Multinomial processing tree (MPT) modeling #urbanism #R k-means cluster analysis city-regions Urban Knowledge Systems Topic modelling Planning Support Systems Software Citation Quarto snakemake Numerical modelling Ocean climate physical oceanography apptainer oceanography R package structural equation modeling bayes factor Forest Simulations Models of forest dynamics multi-lab study mice mechanics growth Tissue Cells Clustering Expectation-Maximization bootstrapping R software Position Weight Matrices singularity neuroimaging effect size biology replicability cancer reproducibility csv osf preclinical research genomics All tags Clear tags

Key

  Associated with an event
  Available for general review
  Public reviews welcome