I hope that the evaluation framework introduced in the paper can become used by other researchers working on mutational signatures.
In this paper, an R package was used to improve the reproducibility of the analyses. Therefore, it would be good to know to what extent this works. The R package includes the following analyses: (1) data trimming and preparation, (2) descriptive statistics, (3) reliability and correlations, (4) t-tests and Bayesian t-tests, (5) latent-change models (structural equation modeling approach), and (6) multiverse analyses. Furthermore, all deidentified data, experiment codes, research materials, and results are publicly accessible on the Open Science Framework (OSF) at https://osf.io/ngfxv. The study’s design and the analyses were pre-registered on OSF. The preregistration can be accessed at https://osf.io/ tywu7.
The method is trained on the data that were available, but it is meant to be re-trainable as soon as new data are published. It would be great to be really sure that even someone else will be able to do it. In case we receive any feedback, we would be really happy to improve our Github repository so as to make the reproduction easier!
1. Because it contains customized numerical methods to implement analytical solutions for an engineering problem relevant to cryogenic storage. This will become increasingly relevant in the future with the increase in the use of liquid hydrogen and LNG as fuel. 2. The storage tank is implemented as a Class and there is an opportunity to understand the object oriented programming mindset of the authors. 3. In the provided Jupyter Notebook, thermodynamic data for nitrogen and methane are provided which enable the users the quick implementation. 4. To reproduce some of the figures and results, the storage tanks need to be modified with inputs available in the paper.
It'll a great helpful to independently check the scientific record I've published, so that errors, if there are any, could be corrected. Also, I will learn how to share the data in a more accessible to other if you could give me feedback.
This paper shows a fun and interesting simulation result. I find it (of course) very important that our results are reproducible. In this paper, however, we did not include the exact code for these specific simulations, but the results should be reproducible using the code of our previous paper in PLOS Computational Biology (Van Oers, Rens et al. https://doi.org/10.1371/journal.pcbi.1003774). I am genuinely curious to see if there is sufficient information for the Biophys J paper or if we should have done better. Other people have already successfully built upon the 2014 (PLOS) paper using our code; see e.g., https://journals.aps.org/pre/abstract/10.1103/PhysRevE.97.012408 and https://doi.org/10.1101/701037).