I hope that the evaluation framework introduced in the paper can become used by other researchers working on mutational signatures.
This article used an open-source python repository for its analysis. It is well-suited for reproduction as more literature evolves on the intersection of urban planning and climate change. The adapted code is published alongside the article.
The method is trained on the data that were available, but it is meant to be re-trainable as soon as new data are published. It would be great to be really sure that even someone else will be able to do it. In case we receive any feedback, we would be really happy to improve our Github repository so as to make the reproduction easier!
We do care about reproducibility. In case we receive any feedback, we would be really happy to improve our Github repository and/or submitted manuscript so as to make the reproduction easier!
Systematically improvable machine learning potentials could have a significant impact on the range of properties that can be modelled, but the toolchain associated with using them presents a barrier to entry for new users. Attempting to reproduce some of our results will help us improve the accessibility of the approach.
Popular descriptors for machine learning potentials such as the Behler-Parinello atom centred symmetry functions (ACSF) or the Smooth Overlap of Interatomic Potentials (SOAP) are widely used but so far not much attention has been paid to optimising how many descriptor components need to be included to give good results.