There is a numerical benchmark reported in Fig. 4 with absolute runtimes and memory usages that can directly be reproduced with the provided source code. The benchmark was performed on the author's computer, and since numerical performance and parallel scaling can be somewhat hardware-dependent, it would be of interest to see whether a performance that is comparable to the one reported in the paper can be reproduced by others on their own computers in practice. The benchmark simulates a growing tissue from one to 10,000 cells in just ten minutes, so this offers an easy entry point into tissue modeling and simulation. No input data is needed to reproduce the output. The program has no dependencies.
The direct numerical simulations (DNS) for this paper were conducted using Basilisk (http://basilisk.fr/). As Basilisk is a free software program written in C, it can be readily installed on any Linux machine, and it should be straightforward to then run the driver code to re-produce the DNS from this paper. Given this, the numerical solutions presented in this paper are a result of many high-fidelity simulations, which each took approximately 24 CPU hours running between 4 to 8 cores. Hence the difficulty in reproducing the results should mainly be in the amount of computational resources it would take, so HPC resources will be required. The DNS in this paper were used to validate the presented analytical solutions, as well as extend the results to a longer timescale. Reproducing these numerical results will build confidence in these results, ensuring that they are independent of the system architecture they were produced on.
- This paper is a good example of a standard social science study that is (I hope!) fully reproducible, from main analysis, to supplementary analyses and figures. - I have not yet received any external feedback w.r.t. its reproducibility, so would be interested to see if I have overlooked any gaps in the reproduction workflow that I anticipated.