I hope that the evaluation framework introduced in the paper can become used by other researchers working on mutational signatures.
The methods are widely applicable to other DNA sequence clustering problems. Someone may obtain contradicting results with a new algorithm. In such a case, rerunning our scripts on the same or new data may help elucidate the source of the differences between the results.
The method is trained on the data that were available, but it is meant to be re-trainable as soon as new data are published. It would be great to be really sure that even someone else will be able to do it. In case we receive any feedback, we would be really happy to improve our Github repository so as to make the reproduction easier!
There are many applications to multi-MeV X-rays. Their penetrative properties make them good for scanning dense objects for industry, and their ionising properties can destroy tumours in radiotherapy. They are also around the energy of nuclear transitions, so they can trigger nuclear reactions to break down nuclear waste into medical isotopes, or to reveal smuggled nuclear-materials for port security. Laser-driven X-ray generation offers a compact and efficient way to create a bright source of X-rays, without having to construct a large synchrotron. To fully utilise this capability, work on optimising the target design and understanding the underlying X-ray mechanisms are essential. The hybrid-PIC code is in a unique position to model the full interaction, so its ease-of-use and reproducibility are crucial for this field to develop.
Metadata annotation is key to reproducibility in sequencing experiments. Reproducing this research using the scripts provided will also show the current level of annotation in years since 2015 when the paper was published.