I hope that the evaluation framework introduced in the paper can become used by other researchers working on mutational signatures.
The methods are widely applicable to other DNA sequence clustering problems. Someone may obtain contradicting results with a new algorithm. In such a case, rerunning our scripts on the same or new data may help elucidate the source of the differences between the results.
The method is trained on the data that were available, but it is meant to be re-trainable as soon as new data are published. It would be great to be really sure that even someone else will be able to do it. In case we receive any feedback, we would be really happy to improve our Github repository so as to make the reproduction easier!
In theory, reproducing this paper should only require a clone of a public Git repository, and the execution of a Makefile (detailed in the README of the paper repository at https://github.com/psychoinformatics-de/paper-remodnav). We've set up our paper to be dynamically generated, retrieving and installing the relevant data and software automatically, and we've even created a tutorial about it, so that others can reuse the same setup for their work. Nevertheless, we've for example never tried it out across different operating systems - who knows whether it works on Windows? We'd love to share the tips and tricks we found to work, and even more love feedback on how to improve this further.
Metadata annotation is key to reproducibility in sequencing experiments. Reproducing this research using the scripts provided will also show the current level of annotation in years since 2015 when the paper was published.