The direct numerical simulations (DNS) for this paper were conducted using Basilisk (http://basilisk.fr/). As Basilisk is a free software program written in C, it can be readily installed on any Linux machine, and it should be straightforward to then run the driver code to re-produce the DNS from this paper. Given this, the numerical solutions presented in this paper are a result of many high-fidelity simulations, which each took approximately 24 CPU hours running between 4 to 8 cores. Hence the difficulty in reproducing the results should mainly be in the amount of computational resources it would take, so HPC resources will be required. The DNS in this paper were used to validate the presented analytical solutions, as well as extend the results to a longer timescale. Reproducing these numerical results will build confidence in these results, ensuring that they are independent of the system architecture they were produced on.
Even though the approach in the paper focuses on a specific measurement (clumped isotopes) and how to optimize which and how many standards we use, I hope that the problem is general enough that insight can translate to any kind of measurement that relies on machine calibration. I've committed to writing a literate program (plain text interspersed with code chunks) to explain what is going on and to make the simulations one step at a time. I really hope that this is understandable to future collaborators and scientists in my field, but I have not had any code review internally and I also didn't receive any feedback on it from the reviewers. I would love to see if what in my mind represents "reproducible code" is actually reproducible, and to learn what I can improve for future projects!
Most of the material is available through Jupyter notebooks in GitHub, and it should be easy to reproduce with the help of Binder. With the notebooks, you could experiment with different parameters to the ones analyzed in the paper. It also contains a large dataset of physical parameters of galaxies analysed in this work. We expect this work to be easily reproducible in the steps described in the repository.
Metadata annotation is key to reproducibility in sequencing experiments. Reproducing this research using the scripts provided will also show the current level of annotation in years since 2015 when the paper was published.
Paper and codes+data have been published 4 years ago, will they still work? I always try to release data and codes to reproduce my papers, but I seldom receive feedback. It would be useful to have comments from a reproducers' team, in order to improve sharing for future research (I switched from MATLAB to Python already).
This paper shows a fun and interesting simulation result. I find it (of course) very important that our results are reproducible. In this paper, however, we did not include the exact code for these specific simulations, but the results should be reproducible using the code of our previous paper in PLOS Computational Biology (Van Oers, Rens et al. https://doi.org/10.1371/journal.pcbi.1003774). I am genuinely curious to see if there is sufficient information for the Biophys J paper or if we should have done better. Other people have already successfully built upon the 2014 (PLOS) paper using our code; see e.g., https://journals.aps.org/pre/abstract/10.1103/PhysRevE.97.012408 and https://doi.org/10.1101/701037).