Papers



Submit a Paper!

Browse ReproHack papers

  • Encapsulated Nanowires: Boosting Electronic Transport in Carbon Nanotubes

    Authors: Andrij Vasylenko, Jamie Wynn, Paulo Medeiros, Andrew J Morris, Jeremy Sloan, David Quigley
    DOI: 10.1103/PhysRevB.95.121408
    Submitted by dquigley      
      Mean reproducibility score:   5.0/10   |   Number of reviews:   2
    Why should we attempt to reproduce this paper?

    DFT calculations are in principle reproducible between different codes, but differences can arise due to poor choice of convergence tolerances, inappropriate use of pseudopotentials and other numerical considerations. An independent validation of the key quantities needed to compute electrical conductivity would be valuable. In this case we have published our input files for calculating the four quantities needed to parametrise the transport simulations from which we compute the electrical conductivity. These are specifically electronic band structure, phonon dispersions, electron-phonon coupling constants and third derivatives of the force constants. Each in turn in more sensitive to convergence tolerances than the last, and it is the final quantity on which the conclusions of the paper critically depend. Reference output data is provided for comparison at the data URL below. We note that the pristine CNT results (dark red line) in figure 3 are an independent reproduction of earlier work and so we are confident the Boltzmann transport simulations are reproducible. The calculated inputs to these from DFT (in the case of Be encapsulation) have not been independently reproduced to our knowledge.

  • New Insight into the Stability of CaCO3 Surfaces and Nanoparticles via Molecular Simulation

    Authors: A. Matthew Bano, P. Mark Rodger, and David Quigley
    DOI: 10.1021/la501409j
    Submitted by dquigley      

    Why should we attempt to reproduce this paper?

    The negative surface enthalpies in figure 5 are surprising. At least one group has attempted to reproduce these using a different code and obtained positive enthalpies. This was attributed to the inability of that code to independently relax the three simulation cell vectors resulting in an unphysical water density. This demonstrates how sensitive these results can be to the particular implementation of simulation algorithms in different codes. Similarly the force field used is now very popular. Its functional form and full set of parameters can be found in the literature. However differences in how different simulation codes implement truncation, electrostatics etc can lead to significant difference in results such as these. It would be a valuable exercise to establish if exactly the same force field as that used here can be reproduced from only its specification in the literature. The interfacial energies of interest should be reproducible with simulations on modest numbers of processors (a few dozen) with run times for each being 1-2 days. Each surface is an independent calculation and so these can be run concurrently during the ReproHack.

  • Thermodynamics of stacking disorder in ice nuclei

    Authors: David Quigley
    DOI: 10.1063/1.4896376
    Submitted by dquigley      
      Mean reproducibility score:   3.0/10   |   Number of reviews:   1
    Why should we attempt to reproduce this paper?

    The results of this paper have been used in multiple subsequent studies as a benchmark against which other methods of performing the same calculation have been tested. Other groups have challenged the results as suffering from finite size effects, in particular the calculations on mixtures of cubic and hexagonal ice. Should there be time during in the event, participants could check this by performing calculations on larger unit cells. Each individual calculation should converge adequately within 96 hours making it amenable to a HPC ReproHack. Given modern HPC hardware many such calculations could be run concurrently on a single HPC node.

  • Optimizing the Use of Carbonate Standards to Minimize Uncertainties in Clumped Isotope Data

    Authors: Ilja J. Kocken, Inigo A. Müller, Martin Ziegler
    DOI: 10.1029/2019GC008545
    Submitted by japhir      

    Why should we attempt to reproduce this paper?

    Even though the approach in the paper focuses on a specific measurement (clumped isotopes) and how to optimize which and how many standards we use, I hope that the problem is general enough that insight can translate to any kind of measurement that relies on machine calibration. I've committed to writing a literate program (plain text interspersed with code chunks) to explain what is going on and to make the simulations one step at a time. I really hope that this is understandable to future collaborators and scientists in my field, but I have not had any code review internally and I also didn't receive any feedback on it from the reviewers. I would love to see if what in my mind represents "reproducible code" is actually reproducible, and to learn what I can improve for future projects!

  • The viewing angle in AGN SED models, a data-driven analysis

    Authors: Andrés Felipe Ramos Padilla, Lingyu Wang, Katarzyna Małek, Andreas Efstathiou, Guang Yang
    Submitted by aframosp    
      Mean reproducibility score:   9.0/10   |   Number of reviews:   1
    Why should we attempt to reproduce this paper?

    Most of the material is available through Jupyter notebooks in GitHub, and it should be easy to reproduce with the help of Binder. With the notebooks, you could experiment with different parameters to the ones analyzed in the paper. It also contains a large dataset of physical parameters of galaxies analysed in this work. We expect this work to be easily reproducible in the steps described in the repository.

  • Investigation into the annotation of protocol sequencing steps in the sequence read archive

    Authors: Alnasir, Jamie, and Hugh P. Shanahan.
    Submitted by hub-admin  

    Why should we attempt to reproduce this paper?

    Metadata annotation is key to reproducibility in sequencing experiments. Reproducing this research using the scripts provided will also show the current level of annotation in years since 2015 when the paper was published.

    Tags: Python SQL

Search for papers

Filter by tags

Python R ArcGIS make Docker Drake Shiny LaTeX SVN knitr HPC Computer Science C Matlab Mathematica Stata Meta-analysis GDAL GEOS GIS PROJ Social Science swig miniconda neuroscience Jupyter Notebook tensorflow keras Pandas SQL Galaxies Astronomy Databases Binder tidyverse emacs literate earth sciences clumped isotopes org-mode geology eyetracking Git robotics deep learning planner reiforcement learning Plasma physics Hybrid-PIC EPOCH Laser Gamma-ray X-ray radiation Petawatt Fortran plasma PIC physics Monte Carlo Atomistic Simulation LAMMPS Electron Transport DFT descriptors interatomic potentials machine learning Molecular Dynamics Python scripting AIRSS structure prediction density functional theory high-throughput machine-learning RNA bioinformatics CFD Fluid Dynamics OpenFOAM C++ DNS Mathematics Droplets Basilisk Particle-In-Cell psychology consumer behavior number estimation mental arithmetic psychophysics Stan Finance SAS Replication crisis Economics Malaria Archaeology Precipitation Epidemiology Parkrun Health Health Economics HTA plumber science of science Zipf networks city size distribution urbanism literature review Preference Visual Questionnaire Mann-Whitney Correlation Conceptual replication Cognitive psychology Multinomial processing tree (MPT) modeling #urbanism #R k-means cluster analysis city-regions Urban Knowledge Systems Topic modelling Planning Support Systems Software Citation Quarto snakemake Numerical modelling Ocean climate physical oceanography apptainer oceanography R package structural equation modeling bayes factor Forest Simulations Models of forest dynamics multi-lab study mice mechanics growth Tissue Cells Clustering Expectation-Maximization bootstrapping R software Position Weight Matrices singularity neuroimaging effect size biology replicability cancer reproducibility csv osf preclinical research All tags Clear tags

Key

  Associated with an event
  Available for general review
  Public reviews welcome