The methods are widely applicable to other DNA sequence clustering problems. Someone may obtain contradicting results with a new algorithm. In such a case, rerunning our scripts on the same or new data may help elucidate the source of the differences between the results.
Even though the approach in the paper focuses on a specific measurement (clumped isotopes) and how to optimize which and how many standards we use, I hope that the problem is general enough that insight can translate to any kind of measurement that relies on machine calibration. I've committed to writing a literate program (plain text interspersed with code chunks) to explain what is going on and to make the simulations one step at a time. I really hope that this is understandable to future collaborators and scientists in my field, but I have not had any code review internally and I also didn't receive any feedback on it from the reviewers. I would love to see if what in my mind represents "reproducible code" is actually reproducible, and to learn what I can improve for future projects!
Metadata annotation is key to reproducibility in sequencing experiments. Reproducing this research using the scripts provided will also show the current level of annotation in years since 2015 when the paper was published.