Papers



Submit a Paper!

Browse ReproHack papers

  • A comprehensive comparison of tools for fitting mutational signatures

    Authors: Matúš Medo, Michaela Medová
    DOI: 10.48550/arXiv.2310.01562
    Submitted by 8medom    

    Why should we attempt to reproduce this paper?

    I hope that the evaluation framework introduced in the paper can become used by other researchers working on mutational signatures.

  • Laser-assisted propagation of a relativistic electron bunch in air

    Authors: R M G M Trines, A P L Robinson, J R Wilkinson, J N Kirk, D S Hills, R M Deas, S Morris, T Goffrey, K Bennett, T D Arber
    DOI: 10.1088/1361-6587/ac0b9d
    Submitted by Stuart_Morris      

    Why should we attempt to reproduce this paper?

    Most electron beam physics is considered in the context of a vacuum, but there are applications to long-range electron beam transmission in air. As particle acceleration sources become more compact, we may have the chance to take particle beams out to the real world. The example provided in the paper describes that of x-ray backscatter detectors, where significantly stronger signals could be achieved by scanning objects with electron beams. This paper forms the basis for a potential new mode of particle-beam research, and it is important to ensure the reproducibility of this work for groups who wish to explore the applications of this new technology.

  • Machine learning a model for RNA structure prediction

    Authors: Nicola Calonaci, Alisha Jones, Francesca Cuturello, Michael Sattler, Giovanni Bussi
    DOI: 10.1093/nargab/lqaa090
    Submitted by giovannibussi      

    Why should we attempt to reproduce this paper?

    The method is trained on the data that were available, but it is meant to be re-trainable as soon as new data are published. It would be great to be really sure that even someone else will be able to do it. In case we receive any feedback, we would be really happy to improve our Github repository so as to make the reproduction easier!

  • Highly efficient conversion of laser energy to hard X-rays in high intensity laser-solid simulations

    Authors: S. Morris, A. Robinson, C. Ridgers
    DOI: 10.1063/5.0055398
    Submitted by Stuart_Morris      

    Why should we attempt to reproduce this paper?

    There are many applications to multi-MeV X-rays. Their penetrative properties make them good for scanning dense objects for industry, and their ionising properties can destroy tumours in radiotherapy. They are also around the energy of nuclear transitions, so they can trigger nuclear reactions to break down nuclear waste into medical isotopes, or to reveal smuggled nuclear-materials for port security. Laser-driven X-ray generation offers a compact and efficient way to create a bright source of X-rays, without having to construct a large synchrotron. To fully utilise this capability, work on optimising the target design and understanding the underlying X-ray mechanisms are essential. The hybrid-PIC code is in a unique position to model the full interaction, so its ease-of-use and reproducibility are crucial for this field to develop.

  • Optimizing the Use of Carbonate Standards to Minimize Uncertainties in Clumped Isotope Data

    Authors: Ilja J. Kocken, Inigo A. Müller, Martin Ziegler
    DOI: 10.1029/2019GC008545
    Submitted by japhir      

    Why should we attempt to reproduce this paper?

    Even though the approach in the paper focuses on a specific measurement (clumped isotopes) and how to optimize which and how many standards we use, I hope that the problem is general enough that insight can translate to any kind of measurement that relies on machine calibration. I've committed to writing a literate program (plain text interspersed with code chunks) to explain what is going on and to make the simulations one step at a time. I really hope that this is understandable to future collaborators and scientists in my field, but I have not had any code review internally and I also didn't receive any feedback on it from the reviewers. I would love to see if what in my mind represents "reproducible code" is actually reproducible, and to learn what I can improve for future projects!

  • Investigation into the annotation of protocol sequencing steps in the sequence read archive

    Authors: Alnasir, Jamie, and Hugh P. Shanahan.
    Submitted by hub-admin  

    Why should we attempt to reproduce this paper?

    Metadata annotation is key to reproducibility in sequencing experiments. Reproducing this research using the scripts provided will also show the current level of annotation in years since 2015 when the paper was published.

    Tags: Python SQL

Search for papers

Filter by tags

Python R GDAL GEOS GIS Shiny PROJ Galaxies Astronomy HPC Databases Binder Social Science Stata make Computer Science Jupyter Notebook tidyverse emacs literate earth sciences clumped isotopes org-mode geology eyetracking LaTeX Git ArcGIS Docker Drake SVN knitr C Matlab Mathematica Meta-analysis swig miniconda tensorflow keras Pandas SQL neuroscience robotics deep learning planner reiforcement learning Plasma physics Hybrid-PIC EPOCH Laser Gamma-ray X-ray radiation Petawatt Fortran plasma PIC physics Monte Carlo Atomistic Simulation LAMMPS Electron Transport DFT descriptors interatomic potentials machine learning Molecular Dynamics Python scripting AIRSS structure prediction density functional theory high-throughput machine-learning RNA bioinformatics CFD Fluid Dynamics OpenFOAM C++ DNS Mathematics Droplets Basilisk Particle-In-Cell psychology Stan Finance SAS Replication crisis Economics Malaria consumer behavior number estimation mental arithmetic psychophysics Archaeology Precipitation Epidemiology Parkrun Health Health Economics HTA plumber science of science Zipf networks city size distribution urbanism literature review Preference Visual Questionnaire Mann-Whitney Correlation Conceptual replication Cognitive psychology Multinomial processing tree (MPT) modeling #urbanism #R k-means cluster analysis city-regions Urban Knowledge Systems Topic modelling Planning Support Systems Software Citation Quarto snakemake Numerical modelling Ocean climate physical oceanography apptainer oceanography R package structural equation modeling bayes factor Forest Simulations Models of forest dynamics multi-lab study mice mechanics growth Tissue Cells Clustering Expectation-Maximization bootstrapping R software Position Weight Matrices singularity neuroimaging effect size biology replicability cancer reproducibility csv osf preclinical research genomics All tags Clear tags

Key

  Associated with an event
  Available for general review
  Public reviews welcome