Papers



Submit a Paper!

Browse ReproHack papers

  • Tree regeneration in models of forest dynamics: A key priority for further research

    Authors: Olalla Díaz‐Yáñez; Yannek Käber; Tim Anders; Friedrich Bohn; Kristin H. Braziunas; Josef Brůna; Rico Fischer; Samuel M. Fischer; Jessica Hetzer; Thomas Hickler et al.
    DOI: 10.1002/ecs2.4807
    Submitted by odiazyanez    
    Number of reviews:   1
    Why should we attempt to reproduce this paper?

    This paper is fully reproducible; we provide the protocol that the different modelers used, the data produced from these models, the observed data, and the code to run the analysis that led to the results of the paper, figures, and text. I have not come across any other paper in forestry that is as fully reproducible as our paper, so it might also be a rare example in this field and hopefully a motivation to others to do so. Please notice that we do not provide the models that were used to run the simulations, as these are the results used (or data collection), but we do provide the data resulting from these simulations.

  • Living HTA: Automating Health Technology Assessment with R

    Authors: Robert A. Smith, Paul P. Schneider, Wael Mohammed
    DOI: 10.12688/wellcomeopenres.17933.1
    Submitted by rasmith3    

    Why should we attempt to reproduce this paper?

    We think this is an interesting paper for anyone who wants to learn to build an API with the R package plumber. This is a novel method in health economics, but we believe will help improve the transparency of modelling methods in our field.

  • PlanGAN: Model-based Planning With Sparse Rewards and Multiple Goals

    Authors: Henry Charlesworth and Giovanni Montana
    Submitted by gmontana74      
      Mean reproducibility score:   10.0/10   |   Number of reviews:   1
    Why should we attempt to reproduce this paper?

    This paper proposes a probabilistic planner that can solve goal-conditional tasks such as complex continuous control problems. The approach reaches state-of-the-art performance when compared to current deep reinforcement learning algorithms. However, the method relies on an ensemble of deep generative models and is computationally intensive. It would be interesting to reproduce the results presented in this paper on their robotic manipulation and navigation problems as these are very challenging problems that current reinforcement learning methods cannot easily solve (and when they do, they require a significantly larger number of experiences). Can the results be reproduced out-of-the-box with the provided code?

  • Investigation into the annotation of protocol sequencing steps in the sequence read archive

    Authors: Alnasir, Jamie, and Hugh P. Shanahan.
    Submitted by hub-admin  

    Why should we attempt to reproduce this paper?

    Metadata annotation is key to reproducibility in sequencing experiments. Reproducing this research using the scripts provided will also show the current level of annotation in years since 2015 when the paper was published.

    Tags: Python SQL
  • Plasmonic nanostructure design and characterization via Deep Learning

    Authors: Malkiel, I., Mrejen, M., Nagler, A. et al.
    DOI: 10.1038/s41377-018-0060-7
    Submitted by hub-admin    

    Why should we attempt to reproduce this paper?

    The current code is written in Torch, which is no longer actively maintained. Since deep learning in nanophotonics is an area of active interest (e.g. for the design of new metamaterials), it is important to update the code to use a more modern deep learning library such as tensorflow/keras

  • Where should new parkrun events be located? Modelling the potential impact of 200 new events on socio-economic inequalities in access and participation

    Authors: Schneider PP, Smith RA, Bullas AM, Bayley T, Haake SS, Brennan A, Goyder E
    Submitted by hub-admin    
      Mean reproducibility score:   7.0/10   |   Number of reviews:   3
    Why should we attempt to reproduce this paper?

    If all went right, the analysis should be fully reproducible without the need to make any adjustments. The paper aims to find optimal locations for new parkruns, but we were not 100% sure how 'optimal' should be defined. We provide a few examples, but the code was meant to be flexible enough to allow potential decision makers to specify their own, alternative objectives. The spatial data set is also quite interesting and fun to play around with. Cave: The full analysis takes a while to run (~30+ min) and might require >= 8gb ram.

  • Open Trade Statistics

    Authors: Pachá (Mauricio Vargas Sepúlveda)
    Submitted by hub-admin    

    Why should we attempt to reproduce this paper?

    The focus of the project is reproducibility. Here we show the differences to access data compared to similar initiatives: https://ropensci.org/blog/2019/05/09/tradestatistics/. Also, similar projects have obscure parts, while our exposes the code from raw data downloading to dashboard creation.

    Tags: R Shiny

Search for papers

Filter by tags

Python R GDAL GEOS GIS Shiny PROJ Galaxies Astronomy HPC Databases Binder Social Science Stata make Computer Science Jupyter Notebook tidyverse emacs literate earth sciences clumped isotopes org-mode geology eyetracking LaTeX Git ArcGIS Docker Drake SVN knitr C Matlab Mathematica Meta-analysis swig miniconda tensorflow keras Pandas SQL neuroscience robotics deep learning planner reiforcement learning Plasma physics Hybrid-PIC EPOCH Laser Gamma-ray X-ray radiation Petawatt Fortran plasma PIC physics Monte Carlo Atomistic Simulation LAMMPS Electron Transport DFT descriptors interatomic potentials machine learning Molecular Dynamics Python scripting AIRSS structure prediction density functional theory high-throughput machine-learning RNA bioinformatics CFD Fluid Dynamics OpenFOAM C++ DNS Mathematics Droplets Basilisk Particle-In-Cell psychology Stan Finance SAS Replication crisis Economics Malaria consumer behavior number estimation mental arithmetic psychophysics Archaeology Precipitation Epidemiology Parkrun Health Health Economics HTA plumber science of science Zipf networks city size distribution urbanism literature review Preference Visual Questionnaire Mann-Whitney Correlation Conceptual replication Cognitive psychology Multinomial processing tree (MPT) modeling #urbanism #R k-means cluster analysis city-regions Urban Knowledge Systems Topic modelling Planning Support Systems Software Citation Quarto snakemake Numerical modelling Ocean climate physical oceanography apptainer oceanography R package structural equation modeling bayes factor Forest Simulations Models of forest dynamics multi-lab study mice mechanics growth Tissue Cells Clustering Expectation-Maximization bootstrapping R software Position Weight Matrices singularity neuroimaging effect size biology replicability cancer reproducibility csv osf preclinical research genomics All tags Clear tags

Key

  Associated with an event
  Available for general review
  Public reviews welcome