We think this is an interesting paper for anyone who wants to learn to build an API with the R package plumber. This is a novel method in health economics, but we believe will help improve the transparency of modelling methods in our field.
This paper proposes a probabilistic planner that can solve goal-conditional tasks such as complex continuous control problems. The approach reaches state-of-the-art performance when compared to current deep reinforcement learning algorithms. However, the method relies on an ensemble of deep generative models and is computationally intensive. It would be interesting to reproduce the results presented in this paper on their robotic manipulation and navigation problems as these are very challenging problems that current reinforcement learning methods cannot easily solve (and when they do, they require a significantly larger number of experiences). Can the results be reproduced out-of-the-box with the provided code?
Because: - Two fellow PhDs working on different topics have been able to reproduce some figures by following the README instructions and I hope this extends to other people - I've tried to incorporate as many of the best practices as possible to make my code and data open and accessible - I've tried to make sure that my data is exactly reproducible with the specified random seed strategy - the paper suggests a method that should be useful to other researchers in my field, which is not useful unless my results are reproducible
Metadata annotation is key to reproducibility in sequencing experiments. Reproducing this research using the scripts provided will also show the current level of annotation in years since 2015 when the paper was published.
The current code is written in Torch, which is no longer actively maintained. Since deep learning in nanophotonics is an area of active interest (e.g. for the design of new metamaterials), it is important to update the code to use a more modern deep learning library such as tensorflow/keras
If all went right, the analysis should be fully reproducible without the need to make any adjustments. The paper aims to find optimal locations for new parkruns, but we were not 100% sure how 'optimal' should be defined. We provide a few examples, but the code was meant to be flexible enough to allow potential decision makers to specify their own, alternative objectives. The spatial data set is also quite interesting and fun to play around with. Cave: The full analysis takes a while to run (~30+ min) and might require >= 8gb ram.
The original data took quite a while to produce for a previous paper, but for this paper, all tables and figures should be exactly reproducible by simply running the jupyter notebook.
The focus of the project is reproducibility. Here we show the differences to access data compared to similar initiatives: https://ropensci.org/blog/2019/05/09/tradestatistics/. Also, similar projects have obscure parts, while our exposes the code from raw data downloading to dashboard creation.