There is a numerical benchmark reported in Fig. 4 with absolute runtimes and memory usages that can directly be reproduced with the provided source code. The benchmark was performed on the author's computer, and since numerical performance and parallel scaling can be somewhat hardware-dependent, it would be of interest to see whether a performance that is comparable to the one reported in the paper can be reproduced by others on their own computers in practice. The benchmark simulates a growing tissue from one to 10,000 cells in just ten minutes, so this offers an easy entry point into tissue modeling and simulation. No input data is needed to reproduce the output. The program has no dependencies.
We spend a lot of time to make our analyses reproducible. A review would allow us to collect some information on whether we are successful with it.
In the middle of the COVID-19 pandemic, this paper provided important evidence regarding the effect of misinformation on vaccination intent. Its analyses and conclusions were extremely important for decision makers. Therefore, it is also important that the analyses are reproducible.
The paper describes pyKNEEr, a python package for open and reproducible research on femoral knee cartilage using Jupyter notebooks as a user interface. I created this paper with the specific intent to make both the workflows it describes and the paper itself open and reproducible, following guidelines from authorities in the field. Therefore, two things in the paper can be reproduced: 1) workflow results: Table 2 contains links to all the Jupyter notebooks used to calculate the results. Computations are long and might require a server, so if you want to run them locally, I recommend using only 2 or 3 images as inputs for the computations. Also, the paper should be sufficient, but if you need further introductory info, there are a documentation website: https://sbonaretti.github.io/pyKNEEr/ and a "how to" video: https://youtu.be/7WPf5KFtYi8 2) paper graphs: In the captions of figures 1, 4, and 5 you can find links to data repository, code (a Jupyter notebook), and the computational environment (binder) to fully reproduce the graph. These computations can be easily run locally and require a few seconds. All Jupyter notebooks automatically download data from Zenodo and provide dependencies, which should make reproducibility easier.