Papers



Submit a Paper!

Browse ReproHack papers

  • Tree regeneration in models of forest dynamics: A key priority for further research

    Authors: Olalla Díaz‐Yáñez; Yannek Käber; Tim Anders; Friedrich Bohn; Kristin H. Braziunas; Josef Brůna; Rico Fischer; Samuel M. Fischer; Jessica Hetzer; Thomas Hickler et al.
    DOI: 10.1002/ecs2.4807
    Submitted by odiazyanez    
    Number of reviews:   1
    Why should we attempt to reproduce this paper?

    This paper is fully reproducible; we provide the protocol that the different modelers used, the data produced from these models, the observed data, and the code to run the analysis that led to the results of the paper, figures, and text. I have not come across any other paper in forestry that is as fully reproducible as our paper, so it might also be a rare example in this field and hopefully a motivation to others to do so. Please notice that we do not provide the models that were used to run the simulations, as these are the results used (or data collection), but we do provide the data resulting from these simulations.

  • Southern Ocean deep mixing band emerges from a competition between winter buoyancy loss and upper stratification strength

    Authors: Romain Caneill, Fabien Roquet, and Jonas Nycander
    DOI: 10.5194/egusphere-2023-2404
    Submitted by rcaneill    
      Mean reproducibility score:   3.3/10   |   Number of reviews:   3
    Why should we attempt to reproduce this paper?

    I tried as hard as possible to make it reproducible, which it is on my computer. I would be happy to see if this still works on other computers. Moreover, by allowing easy reproducibility, I hope that other people may easily build research on top of this work.

  • The Polar Transition from Alpha to Beta Regions Set by a Surface Buoyancy Flux Inversion

    Authors: Romain Caneill Fabien Roquet Gurvan Madec Jonas Nycander
    DOI: 10.1175/JPO-D-21-0295.1
    Submitted by rcaneill      
      Mean reproducibility score:   0.0/10   |   Number of reviews:   1
    Why should we attempt to reproduce this paper?

    I tried hard to make it reproducible, so hopefully this paper can serve as an example on how reproducibility can be achieved. I think that being reproducible with only few commands to type in a terminal is quite an achievment. At least in my field, where I usually see code published along with paper, but with almost no documentation on how to rerun it.

  • Laser-assisted propagation of a relativistic electron bunch in air

    Authors: R M G M Trines, A P L Robinson, J R Wilkinson, J N Kirk, D S Hills, R M Deas, S Morris, T Goffrey, K Bennett, T D Arber
    DOI: 10.1088/1361-6587/ac0b9d
    Submitted by Stuart_Morris      

    Why should we attempt to reproduce this paper?

    Most electron beam physics is considered in the context of a vacuum, but there are applications to long-range electron beam transmission in air. As particle acceleration sources become more compact, we may have the chance to take particle beams out to the real world. The example provided in the paper describes that of x-ray backscatter detectors, where significantly stronger signals could be achieved by scanning objects with electron beams. This paper forms the basis for a potential new mode of particle-beam research, and it is important to ensure the reproducibility of this work for groups who wish to explore the applications of this new technology.

  • Encapsulated Nanowires: Boosting Electronic Transport in Carbon Nanotubes

    Authors: Andrij Vasylenko, Jamie Wynn, Paulo Medeiros, Andrew J Morris, Jeremy Sloan, David Quigley
    DOI: 10.1103/PhysRevB.95.121408
    Submitted by dquigley      
      Mean reproducibility score:   5.0/10   |   Number of reviews:   2
    Why should we attempt to reproduce this paper?

    DFT calculations are in principle reproducible between different codes, but differences can arise due to poor choice of convergence tolerances, inappropriate use of pseudopotentials and other numerical considerations. An independent validation of the key quantities needed to compute electrical conductivity would be valuable. In this case we have published our input files for calculating the four quantities needed to parametrise the transport simulations from which we compute the electrical conductivity. These are specifically electronic band structure, phonon dispersions, electron-phonon coupling constants and third derivatives of the force constants. Each in turn in more sensitive to convergence tolerances than the last, and it is the final quantity on which the conclusions of the paper critically depend. Reference output data is provided for comparison at the data URL below. We note that the pristine CNT results (dark red line) in figure 3 are an independent reproduction of earlier work and so we are confident the Boltzmann transport simulations are reproducible. The calculated inputs to these from DFT (in the case of Be encapsulation) have not been independently reproduced to our knowledge.

Search for papers

Filter by tags

Python R GDAL GEOS GIS Shiny PROJ Galaxies Astronomy HPC Databases Binder Social Science Stata make Computer Science Jupyter Notebook tidyverse emacs literate earth sciences clumped isotopes org-mode geology eyetracking LaTeX Git ArcGIS Docker Drake SVN knitr C Matlab Mathematica Meta-analysis swig miniconda tensorflow keras Pandas SQL neuroscience robotics deep learning planner reiforcement learning Plasma physics Hybrid-PIC EPOCH Laser Gamma-ray X-ray radiation Petawatt Fortran plasma PIC physics Monte Carlo Atomistic Simulation LAMMPS Electron Transport DFT descriptors interatomic potentials machine learning Molecular Dynamics Python scripting AIRSS structure prediction density functional theory high-throughput machine-learning RNA bioinformatics CFD Fluid Dynamics OpenFOAM C++ DNS Mathematics Droplets Basilisk Particle-In-Cell psychology Stan Finance SAS Replication crisis Economics Malaria consumer behavior number estimation mental arithmetic psychophysics Archaeology Precipitation Epidemiology Parkrun Health Health Economics HTA plumber science of science Zipf networks city size distribution urbanism literature review Preference Visual Questionnaire Mann-Whitney Correlation Conceptual replication Cognitive psychology Multinomial processing tree (MPT) modeling #urbanism #R k-means cluster analysis city-regions Urban Knowledge Systems Topic modelling Planning Support Systems Software Citation Quarto snakemake Numerical modelling Ocean climate physical oceanography apptainer oceanography R package structural equation modeling bayes factor Forest Simulations Models of forest dynamics multi-lab study mice mechanics growth Tissue Cells Clustering Expectation-Maximization bootstrapping R software Position Weight Matrices singularity neuroimaging effect size biology replicability cancer reproducibility csv osf preclinical research genomics All tags Clear tags

Key

  Associated with an event
  Available for general review
  Public reviews welcome