I tried hard to make it reproducible, so hopefully this paper can serve as an example on how reproducibility can be achieved. I think that being reproducible with only few commands to type in a terminal is quite an achievment. At least in my field, where I usually see code published along with paper, but with almost no documentation on how to rerun it.
This article used an open-source python repository for its analysis. It is well-suited for reproduction as more literature evolves on the intersection of urban planning and climate change. The adapted code is published alongside the article.
The code and data are both on GitHub. The paper has been published in Wellcome Open Research and has been replicated by multiple other authors.
The direct numerical simulations (DNS) for this paper were conducted using Basilisk (http://basilisk.fr/). As Basilisk is a free software program written in C, it can be readily installed on any Linux machine, and it should be straightforward to then run the driver code to re-produce the DNS from this paper. Given this, the numerical solutions presented in this paper are a result of many high-fidelity simulations, which each took approximately 24 CPU hours running between 4 to 8 cores. Hence the difficulty in reproducing the results should mainly be in the amount of computational resources it would take, so HPC resources will be required. The DNS in this paper were used to validate the presented analytical solutions, as well as extend the results to a longer timescale. Reproducing these numerical results will build confidence in these results, ensuring that they are independent of the system architecture they were produced on.