We invested a lot of work to make the analyses from the paper reproducible and we are very curious how the documentation could be improved and if people run into any problems.
I tried hard to make it reproducible, so hopefully this paper can serve as an example on how reproducibility can be achieved. I think that being reproducible with only few commands to type in a terminal is quite an achievment. At least in my field, where I usually see code published along with paper, but with almost no documentation on how to rerun it.
The code and data are both on GitHub. The paper has been published in Wellcome Open Research and has been replicated by multiple other authors.
This paper presents a fine example of high-throughput computational materials screening studies, mainly focusing on the carbon nanoclusters of different sizes. In the paper, a set of diverse empirical and machine-learned interatomic potentials, which are commonly used to simulate carbonaceous materials, is benchmarked against the higher-level density functional theory (DFT) data, using a range of diverse structural features as the comparison criteria. Trying to reproduce the data presented here (even if you only consider a subset of the interaction potentials) will help you devise an understanding as to how you could approach a high-throughput structure prediction problem. Even though we concentrate here on isolated/finite nanoclusters, AIRSS (and other similar approaches like USPEX, CALYPSO, GMIN, etc.,) can also be used to predict crystal structures of different class of materials with applications in energy storage, catalysis, hydrogen storage, and so on.
In theory, reproducing this paper should only require a clone of a public Git repository, and the execution of a Makefile (detailed in the README of the paper repository at https://github.com/psychoinformatics-de/paper-remodnav). We've set up our paper to be dynamically generated, retrieving and installing the relevant data and software automatically, and we've even created a tutorial about it, so that others can reuse the same setup for their work. Nevertheless, we've for example never tried it out across different operating systems - who knows whether it works on Windows? We'd love to share the tips and tricks we found to work, and even more love feedback on how to improve this further.