Papers



Submit a Paper!

Browse ReproHack papers

  • Investigating the replicability of preclinical cancer biology

    Authors: Timothy M Errington, Maya Mathur, Courtney K Soderberg, Alexandria Denis, Nicole Perfito, Elizabeth Iorns, Brian A Nosek
    DOI: 10.7554/eLife.71601
    Submitted by samuelpawel      

    Why should we attempt to reproduce this paper?

    This papers represents an important milestone in meta-science, as it is one of the first large-scale replication projects outside the social sciences.

  • Accelerating the prediction of large carbon clusters via structure search: Evaluation of machine-learning and classical potentials

    Authors: Bora Karasulu, Jean-Marc Leyssale, Patrick Rowe, Cedric Weber, Carla de Tomas
    DOI: 10.1016/j.carbon.2022.01.031
    Submitted by bkarasulu    
    Number of reviews:   1
    Why should we attempt to reproduce this paper?

    This paper presents a fine example of high-throughput computational materials screening studies, mainly focusing on the carbon nanoclusters of different sizes. In the paper, a set of diverse empirical and machine-learned interatomic potentials, which are commonly used to simulate carbonaceous materials, is benchmarked against the higher-level density functional theory (DFT) data, using a range of diverse structural features as the comparison criteria. Trying to reproduce the data presented here (even if you only consider a subset of the interaction potentials) will help you devise an understanding as to how you could approach a high-throughput structure prediction problem. Even though we concentrate here on isolated/finite nanoclusters, AIRSS (and other similar approaches like USPEX, CALYPSO, GMIN, etc.,) can also be used to predict crystal structures of different class of materials with applications in energy storage, catalysis, hydrogen storage, and so on.

  • Automatic learning of hydrogen-bond fixes in an AMBER RNA force field

    Authors: Thorben Fröhlking, Vojtěch Mlýnský, Michal Janeček, Petra Kührová, Miroslav Krepl, Pavel Banáš, Jiří Šponer, Giovanni Bussi
    Submitted by giovannibussi      

    Why should we attempt to reproduce this paper?

    We do care about reproducibility. In case we receive any feedback, we would be really happy to improve our Github repository and/or submitted manuscript so as to make the reproduction easier!

  • Molecular Dynamics of Solids at Constant Pressure and Stress Using Anisotropic Stochastic Cell Rescaling

    Authors: Vittorio Del Tatto, Paolo Raiteri, Mattia Bernetti, Giovanni Bussi
    DOI: 10.3390/app12031139
    Submitted by giovannibussi      

    Why should we attempt to reproduce this paper?

    We do care about reproducibility. In case we receive any feedback, we would be really happy to improve our Github repository so as to make the reproduction easier!

  • New Insight into the Stability of CaCO3 Surfaces and Nanoparticles via Molecular Simulation

    Authors: A. Matthew Bano, P. Mark Rodger, and David Quigley
    DOI: 10.1021/la501409j
    Submitted by dquigley      

    Why should we attempt to reproduce this paper?

    The negative surface enthalpies in figure 5 are surprising. At least one group has attempted to reproduce these using a different code and obtained positive enthalpies. This was attributed to the inability of that code to independently relax the three simulation cell vectors resulting in an unphysical water density. This demonstrates how sensitive these results can be to the particular implementation of simulation algorithms in different codes. Similarly the force field used is now very popular. Its functional form and full set of parameters can be found in the literature. However differences in how different simulation codes implement truncation, electrostatics etc can lead to significant difference in results such as these. It would be a valuable exercise to establish if exactly the same force field as that used here can be reproduced from only its specification in the literature. The interfacial energies of interest should be reproducible with simulations on modest numbers of processors (a few dozen) with run times for each being 1-2 days. Each surface is an independent calculation and so these can be run concurrently during the ReproHack.

  • Explicit (but not implicit) environmentalist identity predicts pro-environmental behavior and policy preferences

    Authors: Brick, C., & Lai, C. K.
    DOI: 10.1016/j.jenvp.2018.07.003
    Submitted by hub-admin    
      Mean reproducibility score:   6.0/10   |   Number of reviews:   1
    Why should we attempt to reproduce this paper?

    The results of the individual studies (4) could be interpreted in support for the hypothesis, but the meta-analysis suggested that implicit identification was not a useful predictor overall. This conclusion is an important goalpost for future work.