Papers



Submit a Paper!

Browse ReproHack papers

  • What do analyses of city size distributions have in common?

    Authors: Clémentine Cottineau
    DOI: 10.1007/s11192-021-04256-8
    Submitted by clementinecottineau      

    Why should we attempt to reproduce this paper?

    This article was meant to be entirely reproducible, with the data and code published alongside the article. It is however not embedded within a container (e.g. Docker). Will it past the reproducibility test tomorrow? next year? I'm curious.

  • Measuring the impact of COVID-19 vaccine misinformation on vaccination intent in the UK and USA

    Authors: Sahil Loomba, Alexandre de Figueiredo, Simon J. Piatek, Kristen de Graaf, Heidi J. Larson
    DOI: 10.1038/s41562-021-01056-1
    Submitted by samuelpawel      
      Mean reproducibility score:   8.0/10   |   Number of reviews:   1
    Why should we attempt to reproduce this paper?

    In the middle of the COVID-19 pandemic, this paper provided important evidence regarding the effect of misinformation on vaccination intent. Its analyses and conclusions were extremely important for decision makers. Therefore, it is also important that the analyses are reproducible.

  • Investigating the replicability of preclinical cancer biology

    Authors: Timothy M Errington, Maya Mathur, Courtney K Soderberg, Alexandria Denis, Nicole Perfito, Elizabeth Iorns, Brian A Nosek
    DOI: 10.7554/eLife.71601
    Submitted by samuelpawel      

    Why should we attempt to reproduce this paper?

    This papers represents an important milestone in meta-science, as it is one of the first large-scale replication projects outside the social sciences.

  • Analytical solutions for the isobaric evaporation of pure cryogens in storage tanks

    Authors: Felipe Huerta, Velisa Vesovic,
    DOI: 10.1016/j.ijheatmasstransfer.2019.118536
    Submitted by hub-admin    

    Why should we attempt to reproduce this paper?

    1. Because it contains customized numerical methods to implement analytical solutions for an engineering problem relevant to cryogenic storage. This will become increasingly relevant in the future with the increase in the use of liquid hydrogen and LNG as fuel. 2. The storage tank is implemented as a Class and there is an opportunity to understand the object oriented programming mindset of the authors. 3. In the provided Jupyter Notebook, thermodynamic data for nitrogen and methane are provided which enable the users the quick implementation. 4. To reproduce some of the figures and results, the storage tanks need to be modified with inputs available in the paper.

    Tags: Python Matlab
  • pyKNEEr: An image analysis workflow for open and reproducible research on femoral knee cartilage

    Authors: Bonaretti S, Gold GE, Beaupre GS
    DOI: 10.1371/journal.pone.0226501
    Submitted by hub-admin    
      Mean reproducibility score:   6.5/10   |   Number of reviews:   2
    Why should we attempt to reproduce this paper?

    The paper describes pyKNEEr, a python package for open and reproducible research on femoral knee cartilage using Jupyter notebooks as a user interface. I created this paper with the specific intent to make both the workflows it describes and the paper itself open and reproducible, following guidelines from authorities in the field. Therefore, two things in the paper can be reproduced: 1) workflow results: Table 2 contains links to all the Jupyter notebooks used to calculate the results. Computations are long and might require a server, so if you want to run them locally, I recommend using only 2 or 3 images as inputs for the computations. Also, the paper should be sufficient, but if you need further introductory info, there are a documentation website: https://sbonaretti.github.io/pyKNEEr/ and a "how to" video: https://youtu.be/7WPf5KFtYi8 2) paper graphs: In the captions of figures 1, 4, and 5 you can find links to data repository, code (a Jupyter notebook), and the computational environment (binder) to fully reproduce the graph. These computations can be easily run locally and require a few seconds. All Jupyter notebooks automatically download data from Zenodo and provide dependencies, which should make reproducibility easier.

  • Good Me Bad Me: Prioritization of the Good-Self During Perceptual Decision-Making

    Authors: Hu, C.-P., Lan, Y., Macrae, C. N., & Sui, J.
    DOI: 10.1525/collabra.301
    Submitted by hub-admin    
      Mean reproducibility score:   7.0/10   |   Number of reviews:   1
    Why should we attempt to reproduce this paper?

    It'll a great helpful to independently check the scientific record I've published, so that errors, if there are any, could be corrected. Also, I will learn how to share the data in a more accessible to other if you could give me feedback.

    Tags: Python R Matlab
  • Where should new parkrun events be located? Modelling the potential impact of 200 new events on socio-economic inequalities in access and participation

    Authors: Schneider PP, Smith RA, Bullas AM, Bayley T, Haake SS, Brennan A, Goyder E
    Submitted by hub-admin    
      Mean reproducibility score:   7.0/10   |   Number of reviews:   3
    Why should we attempt to reproduce this paper?

    If all went right, the analysis should be fully reproducible without the need to make any adjustments. The paper aims to find optimal locations for new parkruns, but we were not 100% sure how 'optimal' should be defined. We provide a few examples, but the code was meant to be flexible enough to allow potential decision makers to specify their own, alternative objectives. The spatial data set is also quite interesting and fun to play around with. Cave: The full analysis takes a while to run (~30+ min) and might require >= 8gb ram.

  • Explicit (but not implicit) environmentalist identity predicts pro-environmental behavior and policy preferences

    Authors: Brick, C., & Lai, C. K.
    DOI: 10.1016/j.jenvp.2018.07.003
    Submitted by hub-admin    
      Mean reproducibility score:   6.0/10   |   Number of reviews:   1
    Why should we attempt to reproduce this paper?

    The results of the individual studies (4) could be interpreted in support for the hypothesis, but the meta-analysis suggested that implicit identification was not a useful predictor overall. This conclusion is an important goalpost for future work.

  • Cell Contractility Facilitates Alignment of Cells and Tissues to Static Uniaxial Stretch

    Authors: Rens, E. G., & Merks, R. M. H.
    Submitted by hub-admin    
      Mean reproducibility score:   1.0/10   |   Number of reviews:   2
    Why should we attempt to reproduce this paper?

    This paper shows a fun and interesting simulation result. I find it (of course) very important that our results are reproducible. In this paper, however, we did not include the exact code for these specific simulations, but the results should be reproducible using the code of our previous paper in PLOS Computational Biology (Van Oers, Rens et al. https://doi.org/10.1371/journal.pcbi.1003774). I am genuinely curious to see if there is sufficient information for the Biophys J paper or if we should have done better. Other people have already successfully built upon the 2014 (PLOS) paper using our code; see e.g., https://journals.aps.org/pre/abstract/10.1103/PhysRevE.97.012408 and https://doi.org/10.1101/701037).

    Tags: C Matlab