Papers



Submit a Paper!

Browse ReproHack papers

  • Living HTA: Automating Health Technology Assessment with R

    Authors: Robert A. Smith, Paul P. Schneider, Wael Mohammed
    DOI: 10.12688/wellcomeopenres.17933.1
    Submitted by rasmith3    

    Why should we attempt to reproduce this paper?

    We think this is an interesting paper for anyone who wants to learn to build an API with the R package plumber. This is a novel method in health economics, but we believe will help improve the transparency of modelling methods in our field.

  • Droplet impact onto a spring-supported plate: analysis and simulations

    Authors: Michael J. Negus, Matthew R. Moore, James M. Oliver, Radu Cimpeanu
    DOI: https://doi.org/10.1007/s10665-021-10107-5
    Submitted by MNegus      
      Mean reproducibility score:   8.0/10   |   Number of reviews:   1
    Why should we attempt to reproduce this paper?

    The direct numerical simulations (DNS) for this paper were conducted using Basilisk (http://basilisk.fr/). As Basilisk is a free software program written in C, it can be readily installed on any Linux machine, and it should be straightforward to then run the driver code to re-produce the DNS from this paper. Given this, the numerical solutions presented in this paper are a result of many high-fidelity simulations, which each took approximately 24 CPU hours running between 4 to 8 cores. Hence the difficulty in reproducing the results should mainly be in the amount of computational resources it would take, so HPC resources will be required. The DNS in this paper were used to validate the presented analytical solutions, as well as extend the results to a longer timescale. Reproducing these numerical results will build confidence in these results, ensuring that they are independent of the system architecture they were produced on.

  • Finding Efficient Trade-offs in Multi-Fidelity Response Surface Modeling

    Authors: Sander van Rijn, Sebastian Schmitt, Matthijs van Leeuwen, Thomas Bäck
    Submitted by sjvrijn    
      Mean reproducibility score:   9.0/10   |   Number of reviews:   1
    Why should we attempt to reproduce this paper?

    Because: - Two fellow PhDs working on different topics have been able to reproduce some figures by following the README instructions and I hope this extends to other people - I've tried to incorporate as many of the best practices as possible to make my code and data open and accessible - I've tried to make sure that my data is exactly reproducible with the specified random seed strategy - the paper suggests a method that should be useful to other researchers in my field, which is not useful unless my results are reproducible

  • Determination of the fundamental absorption and optical bandgap of dielectric thin films from single optical transmittance measurements

    Authors: A. Tejada, L. Montañez, C. Torres, P. Llontop, L. Flores-Escalante, F. De Zela, A. Winnacker, and J. A. Guerra
    Submitted by hub-admin    

    Why should we attempt to reproduce this paper?

    We propose a simple method to retrieve optical constants from single optical transmittance measurements, in particular in the fundamental absorption region. The construction of needed envelopes is arbitrary and will depend on the user. However, the method should still be robust and deliver similar results.

  • Algorithm configuration data mining for CMA evolution strategies

    Authors: Sander van Rijn, Hao Wang, Bas van Stein, Thomas Bäck
    DOI: 10.1145/3071178.3071205
    Submitted by sjvrijn    
      Mean reproducibility score:   10.0/10   |   Number of reviews:   1
    Why should we attempt to reproduce this paper?

    The original data took quite a while to produce for a previous paper, but for this paper, all tables and figures should be exactly reproducible by simply running the jupyter notebook.

Search for papers

Filter by tags

Python R GDAL GEOS GIS Shiny PROJ Galaxies Astronomy HPC Databases Binder Social Science Stata make Computer Science Jupyter Notebook tidyverse emacs literate earth sciences clumped isotopes org-mode geology eyetracking LaTeX Git ArcGIS Docker Drake SVN knitr C Matlab Mathematica Meta-analysis swig miniconda tensorflow keras Pandas SQL neuroscience robotics deep learning planner reiforcement learning Plasma physics Hybrid-PIC EPOCH Laser Gamma-ray X-ray radiation Petawatt Fortran plasma PIC physics Monte Carlo Atomistic Simulation LAMMPS Electron Transport DFT descriptors interatomic potentials machine learning Molecular Dynamics Python scripting AIRSS structure prediction density functional theory high-throughput machine-learning RNA bioinformatics CFD Fluid Dynamics OpenFOAM C++ DNS Mathematics Droplets Basilisk Particle-In-Cell psychology Stan Finance SAS Replication crisis Economics Malaria consumer behavior number estimation mental arithmetic psychophysics Archaeology Precipitation Epidemiology Parkrun Health Health Economics HTA plumber science of science Zipf networks city size distribution urbanism literature review Preference Visual Questionnaire Mann-Whitney Correlation Conceptual replication Cognitive psychology Multinomial processing tree (MPT) modeling #urbanism #R k-means cluster analysis city-regions Urban Knowledge Systems Topic modelling Planning Support Systems Software Citation Quarto snakemake Numerical modelling Ocean climate physical oceanography apptainer oceanography R package structural equation modeling bayes factor Forest Simulations Models of forest dynamics multi-lab study mice mechanics growth Tissue Cells Clustering Expectation-Maximization bootstrapping R software Position Weight Matrices singularity neuroimaging effect size biology replicability cancer reproducibility csv osf preclinical research genomics All tags Clear tags

Key

  Associated with an event
  Available for general review
  Public reviews welcome