The direct numerical simulations (DNS) for this paper were conducted using Basilisk (http://basilisk.fr/). As Basilisk is a free software program written in C, it can be readily installed on any Linux machine, and it should be straightforward to then run the driver code to re-produce the DNS from this paper. Given this, the numerical solutions presented in this paper are a result of many high-fidelity simulations, which each took approximately 24 CPU hours running between 4 to 8 cores. Hence the difficulty in reproducing the results should mainly be in the amount of computational resources it would take, so HPC resources will be required. The DNS in this paper were used to validate the presented analytical solutions, as well as extend the results to a longer timescale. Reproducing these numerical results will build confidence in these results, ensuring that they are independent of the system architecture they were produced on.
Most of the material is available through Jupyter notebooks in GitHub, and it should be easy to reproduce with the help of Binder. With the notebooks, you could experiment with different parameters to the ones analyzed in the paper. It also contains a large dataset of physical parameters of galaxies analysed in this work. We expect this work to be easily reproducible in the steps described in the repository.
Because: - Two fellow PhDs working on different topics have been able to reproduce some figures by following the README instructions and I hope this extends to other people - I've tried to incorporate as many of the best practices as possible to make my code and data open and accessible - I've tried to make sure that my data is exactly reproducible with the specified random seed strategy - the paper suggests a method that should be useful to other researchers in my field, which is not useful unless my results are reproducible
The current code is written in Torch, which is no longer actively maintained. Since deep learning in nanophotonics is an area of active interest (e.g. for the design of new metamaterials), it is important to update the code to use a more modern deep learning library such as tensorflow/keras
We propose a simple method to retrieve optical constants from single optical transmittance measurements, in particular in the fundamental absorption region. The construction of needed envelopes is arbitrary and will depend on the user. However, the method should still be robust and deliver similar results.
The original data took quite a while to produce for a previous paper, but for this paper, all tables and figures should be exactly reproducible by simply running the jupyter notebook.