This article used an open-source python repository for its analysis. It is well-suited for reproduction as more literature evolves on the intersection of urban planning and climate change. The adapted code is published alongside the article.
If all went right, the analysis should be fully reproducible without the need to make any adjustments. The paper aims to find optimal locations for new parkruns, but we were not 100% sure how 'optimal' should be defined. We provide a few examples, but the code was meant to be flexible enough to allow potential decision makers to specify their own, alternative objectives. The spatial data set is also quite interesting and fun to play around with. Cave: The full analysis takes a while to run (~30+ min) and might require >= 8gb ram.
It uses the drake R package that should make reproducibility of R projects much easier (just run make.R and you're done). However, it does depend on very specific package versions, which are provided by the accompanying docker image.