Submit a Paper!

Browse ReproHack papers

  • Droplet impact onto a spring-supported plate: analysis and simulations

    Authors: Michael J. Negus, Matthew R. Moore, James M. Oliver, Radu Cimpeanu
    Submitted by MNegus      
      Mean reproducibility score:   8.0/10   |   Number of reviews:   1
    Why should we attempt to reproduce this paper?

    The direct numerical simulations (DNS) for this paper were conducted using Basilisk ( As Basilisk is a free software program written in C, it can be readily installed on any Linux machine, and it should be straightforward to then run the driver code to re-produce the DNS from this paper. Given this, the numerical solutions presented in this paper are a result of many high-fidelity simulations, which each took approximately 24 CPU hours running between 4 to 8 cores. Hence the difficulty in reproducing the results should mainly be in the amount of computational resources it would take, so HPC resources will be required. The DNS in this paper were used to validate the presented analytical solutions, as well as extend the results to a longer timescale. Reproducing these numerical results will build confidence in these results, ensuring that they are independent of the system architecture they were produced on.

  • Accelerating the prediction of large carbon clusters via structure search: Evaluation of machine-learning and classical potentials

    Authors: Bora Karasulu, Jean-Marc Leyssale, Patrick Rowe, Cedric Weber, Carla de Tomas
    DOI: 10.1016/j.carbon.2022.01.031
    Submitted by bkarasulu    
    Number of reviews:   1
    Why should we attempt to reproduce this paper?

    This paper presents a fine example of high-throughput computational materials screening studies, mainly focusing on the carbon nanoclusters of different sizes. In the paper, a set of diverse empirical and machine-learned interatomic potentials, which are commonly used to simulate carbonaceous materials, is benchmarked against the higher-level density functional theory (DFT) data, using a range of diverse structural features as the comparison criteria. Trying to reproduce the data presented here (even if you only consider a subset of the interaction potentials) will help you devise an understanding as to how you could approach a high-throughput structure prediction problem. Even though we concentrate here on isolated/finite nanoclusters, AIRSS (and other similar approaches like USPEX, CALYPSO, GMIN, etc.,) can also be used to predict crystal structures of different class of materials with applications in energy storage, catalysis, hydrogen storage, and so on.

  • New Insight into the Stability of CaCO3 Surfaces and Nanoparticles via Molecular Simulation

    Authors: A. Matthew Bano, P. Mark Rodger, and David Quigley
    DOI: 10.1021/la501409j
    Submitted by dquigley      

    Why should we attempt to reproduce this paper?

    The negative surface enthalpies in figure 5 are surprising. At least one group has attempted to reproduce these using a different code and obtained positive enthalpies. This was attributed to the inability of that code to independently relax the three simulation cell vectors resulting in an unphysical water density. This demonstrates how sensitive these results can be to the particular implementation of simulation algorithms in different codes. Similarly the force field used is now very popular. Its functional form and full set of parameters can be found in the literature. However differences in how different simulation codes implement truncation, electrostatics etc can lead to significant difference in results such as these. It would be a valuable exercise to establish if exactly the same force field as that used here can be reproduced from only its specification in the literature. The interfacial energies of interest should be reproducible with simulations on modest numbers of processors (a few dozen) with run times for each being 1-2 days. Each surface is an independent calculation and so these can be run concurrently during the ReproHack.

  • Optimizing the Use of Carbonate Standards to Minimize Uncertainties in Clumped Isotope Data

    Authors: Ilja J. Kocken, Inigo A. Müller, Martin Ziegler
    DOI: 10.1029/2019GC008545
    Submitted by japhir      

    Why should we attempt to reproduce this paper?

    Even though the approach in the paper focuses on a specific measurement (clumped isotopes) and how to optimize which and how many standards we use, I hope that the problem is general enough that insight can translate to any kind of measurement that relies on machine calibration. I've committed to writing a literate program (plain text interspersed with code chunks) to explain what is going on and to make the simulations one step at a time. I really hope that this is understandable to future collaborators and scientists in my field, but I have not had any code review internally and I also didn't receive any feedback on it from the reviewers. I would love to see if what in my mind represents "reproducible code" is actually reproducible, and to learn what I can improve for future projects!