I hope that the evaluation framework introduced in the paper can become used by other researchers working on mutational signatures.
We think this is an interesting paper for anyone who wants to learn to build an API with the R package plumber. This is a novel method in health economics, but we believe will help improve the transparency of modelling methods in our field.
The method is trained on the data that were available, but it is meant to be re-trainable as soon as new data are published. It would be great to be really sure that even someone else will be able to do it. In case we receive any feedback, we would be really happy to improve our Github repository so as to make the reproduction easier!
If all went right, the analysis should be fully reproducible without the need to make any adjustments. The paper aims to find optimal locations for new parkruns, but we were not 100% sure how 'optimal' should be defined. We provide a few examples, but the code was meant to be flexible enough to allow potential decision makers to specify their own, alternative objectives. The spatial data set is also quite interesting and fun to play around with. Cave: The full analysis takes a while to run (~30+ min) and might require >= 8gb ram.
The focus of the project is reproducibility. Here we show the differences to access data compared to similar initiatives: https://ropensci.org/blog/2019/05/09/tradestatistics/. Also, similar projects have obscure parts, while our exposes the code from raw data downloading to dashboard creation.
This was my third attempt at making a paper fully reproducible. To date I it's the most reproducible that I have published. I'm interested to know what stumbling blocks exist that I'm not aware of (aside from needing software like ArcGIS to fully rerun the complete analysis).