This paper is fully reproducible; we provide the protocol that the different modelers used, the data produced from these models, the observed data, and the code to run the analysis that led to the results of the paper, figures, and text. I have not come across any other paper in forestry that is as fully reproducible as our paper, so it might also be a rare example in this field and hopefully a motivation to others to do so. Please notice that we do not provide the models that were used to run the simulations, as these are the results used (or data collection), but we do provide the data resulting from these simulations.
Metadata annotation is key to reproducibility in sequencing experiments. Reproducing this research using the scripts provided will also show the current level of annotation in years since 2015 when the paper was published.
The current code is written in Torch, which is no longer actively maintained. Since deep learning in nanophotonics is an area of active interest (e.g. for the design of new metamaterials), it is important to update the code to use a more modern deep learning library such as tensorflow/keras
We propose a simple method to retrieve optical constants from single optical transmittance measurements, in particular in the fundamental absorption region. The construction of needed envelopes is arbitrary and will depend on the user. However, the method should still be robust and deliver similar results.