There are many applications to multi-MeV X-rays. Their penetrative properties make them good for scanning dense objects for industry, and their ionising properties can destroy tumours in radiotherapy. They are also around the energy of nuclear transitions, so they can trigger nuclear reactions to break down nuclear waste into medical isotopes, or to reveal smuggled nuclear-materials for port security. Laser-driven X-ray generation offers a compact and efficient way to create a bright source of X-rays, without having to construct a large synchrotron. To fully utilise this capability, work on optimising the target design and understanding the underlying X-ray mechanisms are essential. The hybrid-PIC code is in a unique position to model the full interaction, so its ease-of-use and reproducibility are crucial for this field to develop.
Metadata annotation is key to reproducibility in sequencing experiments. Reproducing this research using the scripts provided will also show the current level of annotation in years since 2015 when the paper was published.
The current code is written in Torch, which is no longer actively maintained. Since deep learning in nanophotonics is an area of active interest (e.g. for the design of new metamaterials), it is important to update the code to use a more modern deep learning library such as tensorflow/keras
We propose a simple method to retrieve optical constants from single optical transmittance measurements, in particular in the fundamental absorption region. The construction of needed envelopes is arbitrary and will depend on the user. However, the method should still be robust and deliver similar results.