Papers



Submit a Paper!

Browse ReproHack papers

  • Neurodesk: an accessible, flexible and portable data analysis environment for reproducible neuroimaging

    Authors: Angela I. Renton, Thuy T. Dao, Tom Johnstone, Oren Civier, Ryan P. Sullivan, David J. White, Paris Lyons, Benjamin M. Slade, David F. Abbott, Toluwani J. Amos, Saskia Bollmann, Andy Botting, Megan E. J. Campbell, Jeryn Chang, Thomas G. Close, Monika Dörig, Korbinian Eckstein, Gary F. Egan, Stefanie Evas, Guillaume Flandin, Kelly G. Garner, Marta I. Garrido, Satrajit S. Ghosh, Martin Grignard, Yaroslav O. Halchenko, Anthony J. Hannan, Anibal S. Heinsfeld, Laurentius Huber, Matthew E. Hughes, Jakub R. Kaczmarzyk, Lars Kasper, Levin Kuhlmann, Kexin Lou, Yorguin-Jose Mantilla-Ramos, Jason B. Mattingley, Michael L. Meier, Jo Morris, Akshaiy Narayanan, Franco Pestilli, Aina Puce, Fernanda L. Ribeiro, Nigel C. Rogasch, Chris Rorden, Mark M. Schira, Thomas B. Shaw, Paul F. Sowman, Gershon Spitz, Ashley W. Stewart, Xincheng Ye, Judy D. Zhu, Aswin Narayanan & Steffen Bollmann
    DOI: https://doi.org/10.1038/s41592-023-02145-x
    Submitted by sbollmann    

    Why should we attempt to reproduce this paper?

    We invested a lot of work to make the analyses from the paper reproducible and we are very curious how the documentation could be improved and if people run into any problems.

  • Measuring the impact of COVID-19 vaccine misinformation on vaccination intent in the UK and USA

    Authors: Sahil Loomba, Alexandre de Figueiredo, Simon J. Piatek, Kristen de Graaf, Heidi J. Larson
    DOI: 10.1038/s41562-021-01056-1
    Submitted by samuelpawel      
      Mean reproducibility score:   7.0/10   |   Number of reviews:   4
    Why should we attempt to reproduce this paper?

    In the middle of the COVID-19 pandemic, this paper provided important evidence regarding the effect of misinformation on vaccination intent. Its analyses and conclusions were extremely important for decision makers. Therefore, it is also important that the analyses are reproducible.

  • REMoDNaV: robust eye-movement classification for dynamic stimulation

    Authors: Asim H. Dar, Adina S. Wagner, Michael Hanke
    DOI: https://doi.org/10.3758/s13428-020-01428-x
    Submitted by adswa    
      Mean reproducibility score:   7.0/10   |   Number of reviews:   3
    Why should we attempt to reproduce this paper?

    In theory, reproducing this paper should only require a clone of a public Git repository, and the execution of a Makefile (detailed in the README of the paper repository at https://github.com/psychoinformatics-de/paper-remodnav). We've set up our paper to be dynamically generated, retrieving and installing the relevant data and software automatically, and we've even created a tutorial about it, so that others can reuse the same setup for their work. Nevertheless, we've for example never tried it out across different operating systems - who knows whether it works on Windows? We'd love to share the tips and tricks we found to work, and even more love feedback on how to improve this further.

  • pyKNEEr: An image analysis workflow for open and reproducible research on femoral knee cartilage

    Authors: Bonaretti S, Gold GE, Beaupre GS
    DOI: 10.1371/journal.pone.0226501
    Submitted by hub-admin    
      Mean reproducibility score:   6.5/10   |   Number of reviews:   2
    Why should we attempt to reproduce this paper?

    The paper describes pyKNEEr, a python package for open and reproducible research on femoral knee cartilage using Jupyter notebooks as a user interface. I created this paper with the specific intent to make both the workflows it describes and the paper itself open and reproducible, following guidelines from authorities in the field. Therefore, two things in the paper can be reproduced: 1) workflow results: Table 2 contains links to all the Jupyter notebooks used to calculate the results. Computations are long and might require a server, so if you want to run them locally, I recommend using only 2 or 3 images as inputs for the computations. Also, the paper should be sufficient, but if you need further introductory info, there are a documentation website: https://sbonaretti.github.io/pyKNEEr/ and a "how to" video: https://youtu.be/7WPf5KFtYi8 2) paper graphs: In the captions of figures 1, 4, and 5 you can find links to data repository, code (a Jupyter notebook), and the computational environment (binder) to fully reproduce the graph. These computations can be easily run locally and require a few seconds. All Jupyter notebooks automatically download data from Zenodo and provide dependencies, which should make reproducibility easier.

Search for papers

Filter by tags

Python R ArcGIS make Docker Drake Shiny LaTeX SVN knitr HPC Computer Science C Matlab Mathematica Stata Meta-analysis GDAL GEOS GIS PROJ Social Science swig miniconda neuroscience Jupyter Notebook tensorflow keras Pandas SQL Galaxies Astronomy Databases Binder tidyverse emacs literate earth sciences clumped isotopes org-mode geology eyetracking Git robotics deep learning planner reiforcement learning Plasma physics Hybrid-PIC EPOCH Laser Gamma-ray X-ray radiation Petawatt Fortran plasma PIC physics Monte Carlo Atomistic Simulation LAMMPS Electron Transport DFT descriptors interatomic potentials machine learning Molecular Dynamics Python scripting AIRSS structure prediction density functional theory high-throughput machine-learning RNA bioinformatics CFD Fluid Dynamics OpenFOAM C++ DNS Mathematics Droplets Basilisk Particle-In-Cell psychology consumer behavior number estimation mental arithmetic psychophysics Stan Finance SAS Replication crisis Economics Malaria Archaeology Precipitation Epidemiology Parkrun Health Health Economics HTA plumber science of science Zipf networks city size distribution urbanism literature review Preference Visual Questionnaire Mann-Whitney Correlation Conceptual replication Cognitive psychology Multinomial processing tree (MPT) modeling #urbanism #R k-means cluster analysis city-regions Urban Knowledge Systems Topic modelling Planning Support Systems Software Citation Quarto snakemake Numerical modelling Ocean climate physical oceanography apptainer oceanography R package structural equation modeling bayes factor Forest Simulations Models of forest dynamics multi-lab study mice mechanics growth Tissue Cells Clustering Expectation-Maximization bootstrapping R software Position Weight Matrices singularity neuroimaging effect size biology replicability cancer reproducibility csv osf preclinical research All tags Clear tags

Key

  Associated with an event
  Available for general review
  Public reviews welcome