We invested a lot of work to make the analyses from the paper reproducible and we are very curious how the documentation could be improved and if people run into any problems.
I used a lot of different tools and strategies to make this paper easily reproducible at different levels. There's Docker container for the highest level of reproducibility, and package versions are managed with renv. The data used in the paper is hosted on Zenodo to avoid long queue times when downloading from the Climate Data Store and future-proof for when it goes away and checksumed before using it.
I suggested a few papers last year. I’m hoping that we’ve improved our reproducibility with this one, this year. We’ve done our best to package it up both in Docker and as an R package. I’d be curious to know what the best way to reproduce it is found to be. Working through vignettes or spinning up a Docker instance. Which is the preferred method?
If all went right, the analysis should be fully reproducible without the need to make any adjustments. The paper aims to find optimal locations for new parkruns, but we were not 100% sure how 'optimal' should be defined. We provide a few examples, but the code was meant to be flexible enough to allow potential decision makers to specify their own, alternative objectives. The spatial data set is also quite interesting and fun to play around with. Cave: The full analysis takes a while to run (~30+ min) and might require >= 8gb ram.
It uses the drake R package that should make reproducibility of R projects much easier (just run make.R and you're done). However, it does depend on very specific package versions, which are provided by the accompanying docker image.
This paper is reproduced weekly in a docker container on continuous integration, but it is also set up to work via local installs as well. It would be interesting to see if it's reproducible with a human operator who knows nothing of the project or toolchain.