The direct numerical simulations (DNS) for this paper were conducted using Basilisk (http://basilisk.fr/). As Basilisk is a free software program written in C, it can be readily installed on any Linux machine, and it should be straightforward to then run the driver code to re-produce the DNS from this paper. Given this, the numerical solutions presented in this paper are a result of many high-fidelity simulations, which each took approximately 24 CPU hours running between 4 to 8 cores. Hence the difficulty in reproducing the results should mainly be in the amount of computational resources it would take, so HPC resources will be required. The DNS in this paper were used to validate the presented analytical solutions, as well as extend the results to a longer timescale. Reproducing these numerical results will build confidence in these results, ensuring that they are independent of the system architecture they were produced on.
DFT calculations are in principle reproducible between different codes, but differences can arise due to poor choice of convergence tolerances, inappropriate use of pseudopotentials and other numerical considerations. An independent validation of the key quantities needed to compute electrical conductivity would be valuable. In this case we have published our input files for calculating the four quantities needed to parametrise the transport simulations from which we compute the electrical conductivity. These are specifically electronic band structure, phonon dispersions, electron-phonon coupling constants and third derivatives of the force constants. Each in turn in more sensitive to convergence tolerances than the last, and it is the final quantity on which the conclusions of the paper critically depend. Reference output data is provided for comparison at the data URL below. We note that the pristine CNT results (dark red line) in figure 3 are an independent reproduction of earlier work and so we are confident the Boltzmann transport simulations are reproducible. The calculated inputs to these from DFT (in the case of Be encapsulation) have not been independently reproduced to our knowledge.
The negative surface enthalpies in figure 5 are surprising. At least one group has attempted to reproduce these using a different code and obtained positive enthalpies. This was attributed to the inability of that code to independently relax the three simulation cell vectors resulting in an unphysical water density. This demonstrates how sensitive these results can be to the particular implementation of simulation algorithms in different codes. Similarly the force field used is now very popular. Its functional form and full set of parameters can be found in the literature. However differences in how different simulation codes implement truncation, electrostatics etc can lead to significant difference in results such as these. It would be a valuable exercise to establish if exactly the same force field as that used here can be reproduced from only its specification in the literature. The interfacial energies of interest should be reproducible with simulations on modest numbers of processors (a few dozen) with run times for each being 1-2 days. Each surface is an independent calculation and so these can be run concurrently during the ReproHack.
The results of this paper have been used in multiple subsequent studies as a benchmark against which other methods of performing the same calculation have been tested. Other groups have challenged the results as suffering from finite size effects, in particular the calculations on mixtures of cubic and hexagonal ice. Should there be time during in the event, participants could check this by performing calculations on larger unit cells. Each individual calculation should converge adequately within 96 hours making it amenable to a HPC ReproHack. Given modern HPC hardware many such calculations could be run concurrently on a single HPC node.
Even though the approach in the paper focuses on a specific measurement (clumped isotopes) and how to optimize which and how many standards we use, I hope that the problem is general enough that insight can translate to any kind of measurement that relies on machine calibration. I've committed to writing a literate program (plain text interspersed with code chunks) to explain what is going on and to make the simulations one step at a time. I really hope that this is understandable to future collaborators and scientists in my field, but I have not had any code review internally and I also didn't receive any feedback on it from the reviewers. I would love to see if what in my mind represents "reproducible code" is actually reproducible, and to learn what I can improve for future projects!