Most electron beam physics is considered in the context of a vacuum, but there are applications to long-range electron beam transmission in air. As particle acceleration sources become more compact, we may have the chance to take particle beams out to the real world. The example provided in the paper describes that of x-ray backscatter detectors, where significantly stronger signals could be achieved by scanning objects with electron beams. This paper forms the basis for a potential new mode of particle-beam research, and it is important to ensure the reproducibility of this work for groups who wish to explore the applications of this new technology.
The direct numerical simulations (DNS) for this paper were conducted using Basilisk (http://basilisk.fr/). As Basilisk is a free software program written in C, it can be readily installed on any Linux machine, and it should be straightforward to then run the driver code to re-produce the DNS from this paper. Given this, the numerical solutions presented in this paper are a result of many high-fidelity simulations, which each took approximately 24 CPU hours running between 4 to 8 cores. Hence the difficulty in reproducing the results should mainly be in the amount of computational resources it would take, so HPC resources will be required. The DNS in this paper were used to validate the presented analytical solutions, as well as extend the results to a longer timescale. Reproducing these numerical results will build confidence in these results, ensuring that they are independent of the system architecture they were produced on.
DFT calculations are in principle reproducible between different codes, but differences can arise due to poor choice of convergence tolerances, inappropriate use of pseudopotentials and other numerical considerations. An independent validation of the key quantities needed to compute electrical conductivity would be valuable. In this case we have published our input files for calculating the four quantities needed to parametrise the transport simulations from which we compute the electrical conductivity. These are specifically electronic band structure, phonon dispersions, electron-phonon coupling constants and third derivatives of the force constants. Each in turn in more sensitive to convergence tolerances than the last, and it is the final quantity on which the conclusions of the paper critically depend. Reference output data is provided for comparison at the data URL below. We note that the pristine CNT results (dark red line) in figure 3 are an independent reproduction of earlier work and so we are confident the Boltzmann transport simulations are reproducible. The calculated inputs to these from DFT (in the case of Be encapsulation) have not been independently reproduced to our knowledge.
If all went right, the analysis should be fully reproducible without the need to make any adjustments. The paper aims to find optimal locations for new parkruns, but we were not 100% sure how 'optimal' should be defined. We provide a few examples, but the code was meant to be flexible enough to allow potential decision makers to specify their own, alternative objectives. The spatial data set is also quite interesting and fun to play around with. Cave: The full analysis takes a while to run (~30+ min) and might require >= 8gb ram.
I guess it could be a cool learning experience. The paper is written with knitr, uses a seed, is part of the R package it describes, was openly written using version control (SVN, R-Forge) and is available in an open access journal (@up_jors).