We invested a lot of work to make the analyses from the paper reproducible and we are very curious how the documentation could be improved and if people run into any problems.
I used a lot of different tools and strategies to make this paper easily reproducible at different levels. There's Docker container for the highest level of reproducibility, and package versions are managed with renv. The data used in the paper is hosted on Zenodo to avoid long queue times when downloading from the Climate Data Store and future-proof for when it goes away and checksumed before using it.
Even though the approach in the paper focuses on a specific measurement (clumped isotopes) and how to optimize which and how many standards we use, I hope that the problem is general enough that insight can translate to any kind of measurement that relies on machine calibration. I've committed to writing a literate program (plain text interspersed with code chunks) to explain what is going on and to make the simulations one step at a time. I really hope that this is understandable to future collaborators and scientists in my field, but I have not had any code review internally and I also didn't receive any feedback on it from the reviewers. I would love to see if what in my mind represents "reproducible code" is actually reproducible, and to learn what I can improve for future projects!
I suggested a few papers last year. I’m hoping that we’ve improved our reproducibility with this one, this year. We’ve done our best to package it up both in Docker and as an R package. I’d be curious to know what the best way to reproduce it is found to be. Working through vignettes or spinning up a Docker instance. Which is the preferred method?
It uses the drake R package that should make reproducibility of R projects much easier (just run make.R and you're done). However, it does depend on very specific package versions, which are provided by the accompanying docker image.
This paper is reproduced weekly in a docker container on continuous integration, but it is also set up to work via local installs as well. It would be interesting to see if it's reproducible with a human operator who knows nothing of the project or toolchain.